• 제목/요약/키워드: frailtyHL R-package

검색결과 3건 처리시간 0.019초

A visualizing method for investigating individual frailties using frailtyHL R-package

  • Ha, Il Do;Noh, Maengseok
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.931-940
    • /
    • 2013
  • For analysis of clustered survival data, the inferences of parameters in semi-parametric frailty models have been widely studied. It is also important to investigate the potential heterogeneity in event times among clusters (e.g. centers, patients). For purpose of this analysis, the interval estimation of frailty is useful. In this paper we propose a visualizing method to present confidence intervals of individual frailties across clusters using the frailtyHL R-package, which is implemented from h-likelihood methods for frailty models. The proposed method is demonstrated using two practical examples.

frailtyHL 통계패키지를 이용한 프레일티 모형의 변수선택: 유방암 생존자료 (Variable Selection in Frailty Models using FrailtyHL R Package: Breast Cancer Survival Data)

  • 김보현;하일도;노맹석;나명환;송호천;김자혜
    • 응용통계연구
    • /
    • 제28권5호
    • /
    • pp.965-976
    • /
    • 2015
  • 통계적 모형에서 적절한 변수를 선택하는 것은 회귀분석에서 매우 중요하다. 최근 벌점 함수(예: LASSO 및 SCAD)와 함께 벌점화 가능도를 사용하는 변수 선택 방법들이 선형모형 및 일반화 선형모형과 같은 단순한 통계 모형에서 널리 연구되고 있다. 이러한 방법들의 주요 장점은 중요한 변수를 선택하고 동시에 회귀계수를 추정하는 것이다. 그러므로 이 방법들은 0으로 회귀계수를 추정함으로써 중요하지 않은 변수를 삭제한다. 이 논문에서는 콕스 비례 위험 모형의 한 확장인 준 모수적 프레일티 모형에서 벌점화된 다단계 가능도(h-likelihood; HL)를 기반으로 적절한 변수를 선택하는 방법을 연구한다. 이를 위해 세 가지 벌점 함수 LASSO, SCAD 및 HL을 사용한다. 본 논문에서는 변수선택을 효율적으로 하기 위해 "frailtyHL" R 패키지 (Ha 등, 2012)를 기반으로 하여 새로운 함수를 개발하였다. 개발된 방법의 예증을 위해 전남대 의과대학 병원에서 수집된 유방암 생존자료를 이용하여 세 가지 변수 선택 방법의 결과를 비교하고, 이 변수선택방법들의 상대적 장 단점에 대해 토론한다.

다수준 프레일티모형 변수선택법을 이용한 다기관 방광암 생존자료분석 (Analysis of multi-center bladder cancer survival data using variable-selection method of multi-level frailty models)

  • 김보현;하일도;이동환
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권2호
    • /
    • pp.499-510
    • /
    • 2016
  • 생존분석 회귀모형에서 적절한 변수를 선택하는 것은 매우 중요하다. 본 논문에서는 "frailtyHL" R 패키지 (Ha 등, 2012)를 기반으로 하여 다수준 프레일티 모형 (multi-level frailty models)에서 벌점화 변수선택 방법 (penalized variable-selection method)의 절차를 소개한다. 여기서 모형 추정은 벌점화 다단계 가능도에 기초하며, 세 가지 벌점 함수 (LASSO, SCAD 및 HL)가 고려된다. 개발된 방법의 예증을 위해 벨기에 EORTC (European Organization for Research and Treatment of Cancer; 유럽 암 치료기구)에서 수행된 다국가/다기관 임상시험 자료를 이용하여 세 가지 변수 선택 방법의 결과를 비교하고, 그 결과들의 상대적 장 단점에 대해 토론한다. 특히, 자료 분석 결과에 의하면 SCAD와 HL방법이 LASSO보다 중요한 변수를 잘 선택하는 것으로 나타났다.