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Abstract

For analysis of clustered survival data, the inferences of parameters in semi-parametric
frailty models have been widely studied. It is also important to investigate the potential
heterogeneity in event times among clusters (e.g. centers, patients). For purpose of this
analysis, the interval estimation of frailty is useful. In this paper we propose a visual-
izing method to present confidence intervals of individual frailties across clusters using
the frailtyHL R-package, which is implemented from h-likelihood methods for frailty
models. The proposed method is demonstrated using two practical examples.

Keywords: frailtyHL R-package, h-likelihood, interval estimation, multilevel frailty, shared
frailty.

1. Introduction

The frailty models, Cox’s proportional hazards models (Park et al., 2012) allowing frailty
(random effect) terms, have been widely used for the analysis of clustered survival-time data.
For the inference, the marginal likelihood often involves analytically intractable integrals,
particularly when modelling multilevel or correlated frailties. However, the hierarchical-
likelihood (h-likelihood; Lee and Nelder, 1996, 2001) obviates the need for intractable inte-
gration over the frailty terms (Ha et al., 2001, 2011; Ha and Cho, 2012). It is also important
to investigate the potential heterogeneity in event times among clusters (e.g. centers, pa-
tients) in order to understand and interpret the variability in the data (Vaida and Xu,
2000). For example, despite the use of standardized protocols in multicenter randomized
clinical trials, outcome may vary between centers (Rondeau et al., 2008; Ha et al., 2011).
Such heterogeneity may alter the interpretation and reporting of the treatment. For pur-
pose of this analysis, the interval estimation of frailty is more useful than the inference
of variance components of frailty (Vaida and Xu, 2000; Lee and Nelder, 2009; Ha et al.,
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2011). Plots based on these confidence intervals are also useful for investigating such het-
erogeneity. The h-likelihood consists of data, parameters and unobserved random effects,
and avoids integration over the random-effect distributions. Thus, the h-likelihood can be
used directly for inference on random effects, while the marginal likelihood cannot because
it eliminates them by integration. Very recently, Ha et al. (2012a, 2012b) have developed the
frailtyHL R-package which implements h-likelihood (HL) procedures for semi-parametric
frailty models with non-parametric baseline hazards.

However, this package does not directly provide the interval estimation of frailty. In this
paper, we show how to construct the interval estimation and its plot using the frailtyHL
package. The proposed method is illustrated using two practical examples with well-known
real data sets. The paper is organized as follows. In Section 2 we review a formulation of
frailty models and the h-likelihood estimation procedure including the frailtyHL package.
In Section 3 we outline the interval estimation of frailty and present the corresponding
R-codes. Our method is demonstrated using two practical examples in Section 4. Finally,
we briefly discuss the proposed method in Section 5. The details of R-codes are given in
Appendix.

2. The model estimation

2.1. A formulation of frailty models

Let Tij (i = 1, . . . , q, j = 1, . . . , ni, n =
∑
i ni) be the event time (survival time) for

the jth observation in the ith cluster and let Cij be the corresponding censoring time.
Then the observable random variable is yij = min(Tij , Cij) and the censoring indicator is
δij = I(Tij ≤ Cij) where I(·) is the indicator function. Denote by vi a vector of unobserved
log-frailty (or random effects) associated with the ith cluster. Given vi, the conditional
hazard function of Tij is of the form

λij(t|vi) = λ0(t) exp(ηij), (2.1)

where λ0(·) is the unknown baseline hazard function,

ηij = xTijβ + vi

is the linear predictor for the log-hazard, and xij = (xij1, . . . , xijp)
T is p × 1 covariate

vectors corresponding to fixed effects β = (β1, . . . , βp)
T . We assume that the log-frailties

vi are independent and follow a distribution with frailty parameter θ. Although the results
of this paper can be extended to non-normal frailties (e.g. gamma frailty), for simplicity,
we assume a normal distribution vi ∼ N(0, θ) with θ = σ2, which is useful for modelling
multi-component frailties (Ha et al., 2007) including multilevel (nested) structures and/or
correlated frailties including negative correlation (Rondeau et al., 2008; Ha et al., 2011).

Furthermore, the shared frailty model (2.1) can be easily extended to a multilevel structure
in which patients, nested within hospitals, have recurrent event times as in the CGD data
(Fleming and Harrington, 1991). Let Tijk be the kth recurrent event time of the jth patient
in the i the cluster (center). Let vci be a frailty on the ith center and vpij be that on the
jth patient in the ith center. The multilevel frailty model (Yau, 2001; Ha et al., 2007) is
described by: λijk(t|vhi , v

p
ij) = λ0(t) exp(ηijk) with

ηijk = xTijkβ + vci + vpij , (2.2)



A visualizing method using frailtyHL package 933

where vci ∼ N(0, σ2
c ) and vpij ∼ N(0, σ2

p) are independent. Note that the extension of results
from the shared model (2.1) to the multilevel model (2.2) is straightforward (Ha et al., 2007,
2011).

2.2. H-likelihood procedure

In the semi-parametric frailty model (2.1), the functional form of λ0(t) is unknown. The

non-parametric estimator of the baseline cumulative hazard function Λ0(t) =
∫ t
0
λ0(k)dk

is a step function with jumps at the observed event times. Restricting ourselves to hazard
functions of the above form, we have Λ0(t) =

∑
k:y(k)≤t λ0k, where y(1) < . . . < y(r) are the

ordered distinct event times and λ0k = λ0(y(k)). Following Ha et al. (2001), the h-likelihood
for the model (2.1) is given by

h = h{(β, λ0, θ), v} =
∑
ij

`1ij +
∑
i

`2i, (2.3)

where ∑
ij

`1ij =
∑
ij

δij{log λ0(yij) + ηij} −
∑
ij

{Λ0(yij) exp(ηij)}

=

r∑
k=1

d(k) log λ0k +
∑
ij

δijηij −
r∑

k=1

λ0k

{ ∑
(i,j)∈R(k)

exp(ηij)

}
,

`1ij = `1ij(β, λ0; (yij , δij)|vi) is the logarithm of the conditional density function for (yij , δij)
given vi, `2i = `2i(θ; vi) is the logarithm of the density function for vi with parameter θ; if the
log-frailty vi ∼ N(0, θ) with θ = σ2, then `2i = `2i(θ; vi) = −(1/2) log(2πθ)− (1/2)(vT v/θ).
Here, v = (v1, . . . , vq)

T is a vector of vi’s, λ0 = (λ01, . . . , λ0r)
T , d(k) is the number of events

at y(k), and R(k) = R(y(k)) = {(i, j) : yij ≥ y(k)} is the risk set at y(k).
As the number of λ0ks can increase with the number of events, the function λ0(t) is

potentially of high dimension. Accordingly, for estimation of (β, v) Ha et al. (2001) proposed
the use of the profiled h-likelihood h∗ from which λ0 in h of (2.3) is eliminated:

h∗ = h|λ0=λ̂0
=
∑
ij

`∗1ij +
∑
i

`2i, (2.4)

where

λ̂0k(β, v) =
d(k)∑

(i,j)∈R(k)
exp(ηij)

,

are solutions of the estimating equations, ∂h/∂λ0k = 0, for k = 1, . . . , D. Note here that∑
ij `
∗
1ij =

∑
ij `1ij |λ0=λ̂0

=
∑
k d(k) log λ̂0k +

∑
ij δijηij −

∑
k d(k) does not depend on

nuisance parameters λ0 and that h∗ in (2.4) is proportional to the penalized partial likelihood
(denoted by hp in the frailtyHL package) of Therneau and Grambsch (2000). Thus Lee
and Nelder’s (1996, 2001) h-likelihood procedure for hierarchical generalized linear models
(HGLMs) can be extended to the frailty models based on h∗. Accordingly, given frailty
parameter θ, the maximum h-likelihood estimators of τ = (βT , vT )T are obtained by solving
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the joint estimating equations, ∂h∗/∂τ = ∂h/∂τ |λ0=λ̂0
= 0; in particular, v̂(θ) is the solution

to ∂h∗/∂v = 0 for a given θ and v̂(θ) ≈ Eθ(v|y, δ) as n∗ = min1≤i≤q ni → ∞ (Lee and
Nelder, 2009; Ha et al., 2011). Furthermore, for the estimation of θ we use an adjusted
profile h-likelihood, pβ,v(h

∗), defined by

pτ (h∗) =

[
h∗ − 1

2
log det

{
J(h∗; τ)

(2π)

}]∣∣∣∣
τ=τ̂

, (2.5)

where τ̂ = τ̂(θ) = (β̂T (θ), v̂T (θ))T and J(h∗; τ) = −∂2h∗/∂τ2 is an information matrix for
τ with a detailed form in (3.1): see also Ha and Lee (2003).

The outline of frailtyHL() package (Ha et al., 2012b) for fitting frailty model (2.1) is
below. The main function is frailtyHL(). For instance,

> frailtyHL(formula=Surv(time,status)∼x +(1|id), RandDist=“Normal”,
+ mord=0, dord=1)

fits a lognormal frailty model as a default and uses RandDist=“Gamma” for the gamma
frailty model. Here formula is a formula object, with the response on the left of a∼ operator,
and the terms for the fixed and random effects on the right. The response is a survival object
as returned by the Surv function (Therneau, 2010). Here, time and status denote survival
time and censoring indicator having 1 (0) for uncensored (censored) observation, where x
denotes a fixed covariate and id denotes the subjects for a normally distributed log frailty.
The expression (1|id) ((x|id)) specify the random intercept (random slope) model. mord
and dord are the orders of Laplace approximations to fit the mean parameters (mord=
0 or 1) and the dispersion parameters (dord= 1 or 2), respectively. Let HL(a,b) be the
h-likelihood method using order “a” in mord and order “b” for dord. We recommend the
use of HL(0,1) for the lognormal frailty and that of HL(0,2) for the gamma frailty if variance
of frailty is not large: for the details see Ha et al. (2012b).

3. Interval estimation of frailty and R-codes

In frailty models (2.1), as in HGLMs (Lee and Nelder, 2009; Kim et al., 2011), location
parameters (β, λ0, v) and frailty parameters θ are asymptotically orthogonal (Ha and Lee,
2003; Ha et al., 2011). For a moment, assume that θ is known. Accordingly, we need only
focus on (β, v) after eliminating λ0 i.e. by using h∗. Following Ha and Lee (2003) and

Ha (2008), the asymptotic covariances for β̂ and v̂ − v are obtained from the inverse of
information matrix, J(h∗;β, v) = −∂2h∗/∂(β, v)2, of β and v based on h∗:

J(h∗;β, v) = −
(
∂2h∗/∂β∂βT ∂2h∗/∂β∂vT

∂2h∗/∂v∂βT ∂2h∗/∂v∂vT

)
=

(
XTW ∗X XTW ∗Z
ZTW ∗X ZTW ∗Z + U

)
, (3.1)

where X and Z are the n× p and n× q model matrices for β and v whose ijth row vectors
are xTij and zTij , respectively, U = −∂2`2/∂v2, and the weight matrix W ∗ = W ∗(β, v) is given
in Appendix B of Ha and Lee (2003). This means that an approximated variance of v̂ − v
can be computed from the lower right-hand corner of J−1 in (3.1), leading to

var(v̂ − v) ≈ {(ZTW ∗Z + U) − (ZTW ∗X)(XTW ∗X)−1(XTW ∗Z)}−1|β=β̂,v=v̂.
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Along the lines of Lee and Nelder (2009) and Ha et al. (2011), the individual (1−α)-level
h-likelihood confidence intervals (CIs) for the uni-dimensional components vk of v are of the
form

v̂k ± zα/2 · SE(v̂k − vk), (3.2)

where v̂ maximizes the profile HL h∗ in (2.4), SE(v̂k − vk) =
√

var(v̂k − vk), and zα/2 is the
normal quantile with probability α/2 in the right tail (e.g. z0.025 = 1.96). Very recently, Ha
et al. (2013) have shown via simulation studies that the HL interval in (3.2) preserves the
nominal confidence level.

The R-codes for computing the 95% CIs in (3.2) of log-frailty v using the frailtyHL
package as presented in Appendix A and B, with two practical examples.

4. Practical examples

We now propose a visualizing method for the CIs in (3.2) of individual frailties across
clusters. For the illustration we re-analyze two practical examples (e.g., Ha et al., 2012b)
using two well-know real data sets; one is kidney infection data (McGilchrist and Aisbett,
1991) and the other is the chronic granulomatous disease (CGD) recurrent data (Fleming
and Harrington, 1991).

4.1. Shared frailty model: kidney infection data

The data (McGilchrist and Aisbett, 1991) consist of times until the first and second
recurrences (ni ≡ 2) of kidney infection in 38 (q = 38) patients using a portable dialysis
machine. Each survival time (time) is the time until infection since the insertion of the
catheter. The survival times for the same patient are likely to be related because of a shared
frailty describing the common patient’s effect. The catheter is later removed if infection
occurs and can be removed for other reasons, which we regard as censoring; about 24 per
cent of the data were censored. We fit lognormal shared frailty model (2.1) with a single
covariate, the sex (1 = male; 2 = female), using HL(0,1) in the frailtyHL(); the R-code
and results are given in Appendix A.
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Figure 4.1 Estimated frailties of 38 patients in the kidney data and their 95% confidence intervals,
under shared frailty model



936 Il Do Ha · Maengseok Noh

The output shows that the effect of Sex is very significant (t-value = -3.214 with p-value
= 0.001). That is, the female group has a significantly lower risk than the male group. Here,
the variance estimate of frailty is σ̂2 = 0.478 (with SE = 0.313). Note that although we
report the SE of σ2, one should not use it for testing the absence of frailty σ2 = 0 (Vaida
and Xu, 2000). Such a null hypothesis is on the boundary of the parameter space, and
hence, the critical value of an asymptotic (χ2

0 +χ2
1)/2 distribution is χ2

1,0.10 = 2.71 at the 5%
level (Ha et al., 2011, 2012b). The difference in deviance −2pβ,v(hp) in (2.5) between Cox’s
model without frailty and the lognormal frailty model is 369.96 − 364.68 = 5.28 (> 2.71),
indicating that the frailty effect is significant, i.e., σ2 > 0. Here, the results from fitting
Cox’s model without frailty are available by adding the two arguments varfixed=TRUE
and varinit=c(0) in the frailtyHL() function (Ha et al., 2012b).

In Appendix A we present the R-codes for implementing the CIs and their plot for frail-
ties of patients. Figure 4.1 shows that the random patient effects are heterogenous across
patients; in particular, the 21th patient has a very lower frailty (i.e. less hazard) and that
the corresponding CI does not include zero. This is also confirmed from the fact that the
21th patient among all patients experienced the longest 2nd infection time, 562. Thus we
find that the Figure 4.1 can identify the heterogeneity of some particular patients. However,
the test of frailty’s variance does not provide such information.

4.2. Multilevel frailty model: CGD recurrent data
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Figure 4.2 Estimated frailties of 13 centers and 128 patients in the CGD data and their 95% confidence
intervals, under multilevel frailty model; (a) center effects and (b) patient effects
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The CGD data set (Fleming and Harrington, 1991) consists of a placebo-controlled ran-
domized trial of gamma interferon (rIFN-g) in the treatment of CGD. 128 patients (id) from
13 centers (q1 = 13, q2 = 128) were tracked for around one year. The number (i.e., cluster
size) of patients per center ranged from 4 to 26. The survival times (tstop-tstart) are the
recurrent infection times of each patient from the different centers. Censoring occurred at
the last observation for all patients, except one, who experienced a serious infection on the
data when he left the study; in the CGD study, about 63 per cent of the data were censored.
The recurrent infection times for a given patient are likely to be correlated. However, each
patient belongs to one of the 13 centers; hence, the correlation can also be attributed to a
center effect.

Ignoring important random components may render many of the traditional statistical
analysis techniques invalid (Ha et al., 2007). We fit a multilevel lognormal frailty model
(2.2) with two frailties and a single covariate, treat (rIFN-g versus placebo), using HL(0,1).
Here, the two frailties are the random center and patient effects. The R codes and results
are provided in Appendix B. The output shows that the effect of treatment is significant (t-
value = -3.203 with p-value= 0.001), indicating that rIFN-g significantly reduces the rate of
serious infection in CGD patients. The estimate of the variance of patient frailty (σ̂2

p = 0.982)
is considerably larger than the variance of center frailty (σ̂2

c = 0.026), indicating that the
random-patient effect is more heterogeneous. We find that the results above are very similar
to those using HL(1,1) by Ha et al. (2012b). Though not reported here, we have investigated
the significance of both random center and random patient effects using the difference of
deviance (−2pβ,v(h

∗)) as in Ha et al. (2012b); the results show the random-center effects
are not necessary (i.e. σ2

c = 0), whereas the random-patient effects are indeed necessary (i.e.
σ2
p > 0).
Figure 4.2 confirms these findings above; the corresponding R-codes are given in Appendix

B. That is, Figure 4.2(a) shows random center effects (vc) are very homogeneous across
centers. However, Figure 4.2(b) indicates substantial variation in the random patient effects
(vp) across patients. In particular, five patients (2, 14, 15, 53, 119) noticeably stand out
because their CIs do not include zero; this may indicate a possibility that the five patients
are outliers: see also Noh et al. (2006).

5. Discussion

We have shown how to display the interval estimation of frailty based on the frailtyHL
package. We have also found via two examples in Section 4 that the proposed method is very
useful for investigating some heterogeneity across clusters. The updated R-package including
interval estimation is current available from the second author. This package allows shared
and multilevel frailties only. Allowance for dispersion frailties (Noh et al., 2006) or correlated
frailties (Ha et al., 2011) is currently developing.
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Appendix A: R codes and results for shared frailty model

############## (A1) Fitted model ###############
> library(frailtyHL)
> data(kidney)
> res<-frailtyHL(Surv(time,status)∼sex+(1|id), data=kidney) # fitting of shared model
iteration :
48
convergence :
7.72225e-07
[1] “converged”
[1] “Results from the log-normal frailty model”
[1] “Number of data : ”
[1] 76
[1] “Number of event : ”
[1] 58
[1] “Model for conditional hazard : ”
Surv(time, status) sex + (1 | id)
[1] “Method : HL(0,1)”
[1] “Estimates from the mean model”

Estimate Std. Error t-value p-value # fixed effect’s estimate and its standard error
sex -1.353 0.4209 -3.214 0.00131
[1] “Estimates from the dispersion model”

Estimate Std. Error
id 0.4776 0.3127 # log-frailty’s variance and its standard error
-2h0 -2∗hp -2∗pb,v(hp)
[1,] 332.67 388.24 364.68
cAIC mAIC rAIC # cAIC, conditional AIC; mAIC, marginal AIC; rAIC, restricted AIC
[1,] 361.77 368.79 366.68

############## (A2) CI for frailties ###############
> p=1; q=38
> vh<- res$vh # estimates of log-frailties
> var<- diag(res$Hinv)[(p+1):(p+q)] # computation of var(v̂ − v)
> se<- sqrt(var) # their standard errors
> lb<- vh -1.96∗se # lower bound
> ub<- vh +1.96∗se # upper bound
> CI<- cbind(lb,ub) # computation of their CIs
> patient<- 1:q
> plot(vh∼patient, ylim=c(-3,3), ylab=“Estimated patient effects”,
+ xlab=“Patient number”, pch=20, type=“o”) # plot for interval estimation
> abline(h=0)
> for (i in 1:q){
+ x1<- c(i,i)
+ y1<- c(lb[i],ub[i])
+ lines (y1∼x1)
+ }
> text(21.8, vh[21],21, cex=.8)
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Appendix B: R codes and results for multilevel frailty model

############## (B1) Fitted model ###############
> data(cgd)
# fitting of multilevel model> res<-frailtyHL(Surv(tstop-tstart,status)∼treat+(1|center)+(1|id),
data=cgd)
iteration :
170
convergence :
9.647067e-07
[1] “converged”
[1] “Results from the log-normal frailty model”
[1] “Number of data : ”
[1] 203
[1]“Number of event : ”
[1] 76
[1] “Model for conditional hazard : ”
Surv(tstop - tstart, status) treat + (1 | center) + (1 | id)
[1] “Method : HL(0,1)”
[1] “Estimates from the mean model”

Estimate Std. Error t-value p-value
treatrIFN-g -1.074 0.3353 -3.203 0.001362
[1] “Estimates from the dispersion model”

Estimate Std. Error
center 0.0262 0.1533
id 0.9817 0.5007
-2h0 -2∗hp -2∗pb,v(hp)
[1,] 604.31 850.02 693.07
cAIC mAIC rAIC
[1,] 685.44 698.72 697.07
############## (B2) CI for frailties ###############
p=1; q1=13; q2=128; q=q1+q2
vh<- res$vh; var<- diag(res$Hinv)[(p+1):(p+q)]; se<-sqrt(var)
v1<-vh[1:q1]; se1<-se[1:q1] #### For center
lb1<-v1-1.96∗se1; ub1<-v1+1.96∗se1; CI1<-cbind(lb1,ub1)
center<-1:q1
plot(v1∼center, ylim=c(-0.5,0.5), ylab=“Estimated center effects”,
xlab=“Center number”, sub=“(a)”, pch=20, type=“o”)
abline(h=0)
for (i in 1:q1){ x1<-c(i,i); y1<-c(lb1[i],ub1[i]); lines (y1∼x1) }
v2<-vh[(q1+1):q]; se2<-se[(q1+1):q] #### For patient
lb2<-v2-1.96*se2; ub2<-v2+1.96*se2; CI2<-cbind(lb2,ub2)
patient<-1:q2
plot(v2∼patient, ylim=c(-3,3), ylab=“Estimated patient effects”,
xlab=“Patient number”, sub=“(b)”,pch=20, type=“o”)
abline(h=0)
for (i in 1:q2){ x2<-c(i,i); y2<-c(lb2[i],ub2[i]); lines (y2∼x2) }
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