• Title/Summary/Keyword: fragmentation pathway

Search Result 146, Processing Time 0.026 seconds

Inspection of the Fragmentation Pathway for Thiamethoxam

  • Son, Sunwoong;Kim, Byungjoo;Ahn, Soenghee
    • Mass Spectrometry Letters
    • /
    • v.8 no.3
    • /
    • pp.65-68
    • /
    • 2017
  • Thiamethoxam is one of the main suspect in honeybee colony collapse disorder (CCD). Due to this reason, thiamethoxam including imidacloprid and clothianidin has been banned for two years in some Europe countries. The CCD phenomenon has also been reported in Korea. Regarding this issue and needs, a new project has started to develop the method for the quatitation of thiamethoxam using isotope dilution mass spectrometry (IDMS). In the process of optimization for the IDMS method with thiamethoxam and $thiamethoxam-d_3$, we observed that the fragment peaks did not correspond to the fragmentation pathway as published elsewhere. Here, we proposed a candidate fragmentation pathway. To validate the proposed fragmentation pathway, another isotope analogue, $thiamethoxam-d_4$, was introduced and the MS/MS spectra of both isotope analogues were compared. In addition, the MS/MS/MS spectra of thiamethoxam were inspected for more evidence of the candidate pathway. Those spectra indicated that the proposed fragmentation pathway could be used to assign the fragment peaks of thiamethoxam.

A Reinvestigation of the Fragmentation of 2-Carbena-1,3-dioxolane by CASSCF and CASPT2 Calculations

  • Park, Bong-Jin;Hrovat, David A.;Borden, Weston Thatcher
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.260-262
    • /
    • 2004
  • In agreement with the results of previous MP2 calculations by Sauers, B3LYP, CASSCF, and CASPT2 calculations on the parent 2-carbena-1,3-dioxolane show that it fragments to ethylene plus $CO_2$ by a concerted pathway with only a small energy barrier. Not only is fragmentation via stepwise C-O bond cleavage computed to be a much higher energy pathway, but the singlet diradical that would be an intermediate along such a reaction path is not even computed to be a local minimum on the potential energy surface.

Observations on Fragmentation Pathway of Farinomalein and its Isomers by Structural Investigation Using LC-MS/MS

  • Firke, Narayan P.;Markandeya, Anil G.;Deshmukh, Rajendra S. Konde;Pingale, Shirish S.
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.37-40
    • /
    • 2018
  • Farinomalein is a maleimide-bearing compound well known for its anti-fungal activity. In the present study, synthesis of farinomalein is achieved via Stobbe condensation followed by Haval-Argade contrathermodynamic rearrangement. Kinetically driven Stobbe condensation followed by condensation with beta-alanine reveals formation of two isomers of farinomalein. This article describes application of LC-MS/MS in structure elucidation of farinomalein 1 and its isomers 2 and 3 encountered in its synthesis. The proposed distinct fragmentation pathway is supported by rational organic reaction mechanism. These fragmentation pathways are significant for analytical method development of farinomalein in near future. The structures of farinomalein 1 and its isomers 2 and 3 have been assigned undisputedly.

Induction of Apoptosis by Camptothecin in HL-60 Cells (HL-60 세포에서 Camptothecin의 apoptosis 유도작용)

  • 김해종;천영진;김미영
    • YAKHAK HOEJI
    • /
    • v.43 no.3
    • /
    • pp.385-390
    • /
    • 1999
  • Camptothecin (CPT) has been known to induce apoptosis in various cancer cell lines. To examine the intracellular apoptotic death signal initiated by CPT, we investigated the possible connection between caspase-3 activation and GSH depletion during CPT-induced apoptosis in HL-60 cells. Treatment of cells with $1{\;}{\mu}M$ CPT induced PARP cleavage accompanied by DNA fragmentation. z-VAD-fmk, a caspase-3 inhibitor, blocked the CPT-induced DNA fragmentation. Pretreatment of cells with N-acetylcysteine, a precursor of GSH biosynthesis, failed to inhibit CPT-induced PARP celavage and DNA gragmenatation. No significant changes in GSH depletion is not essential for caspase activation during CPT-induced apoptosis. We also investigated whether CPT-induced apoptosis is associated with changes of the levels of Bax and Bcl-2, two proteins involved in the control of apoptosis. Bcl-2 levels exhibited a late decrease compared with the kinetics of DNA fragmentation, whereas Bax levels increased more rapidly after CPT treatment. These results suggest that Bax plays more important role than Bcl-2 in inducing DNA fragmentation and may function upsteam of proteolytic activation of caspase-3 pathway in CPT-induced apoptosis.

  • PDF

Identification and evaluation of fragmentation pathways of PDE-5 inhibitor analogues using LC-QTOF-MS (LC-QTOF-MS를 이용한 발기부전치료제 유사물질의 fragmentation pathway 분석)

  • Do, Jung-Ah;Noh, Eunyoung;Yoon, Soon-Byung;Park, Hyoung-Joon;Cho, Sooyeul;Park, Sung-Kwan;Yoon, Chang-Yong
    • Analytical Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.278-287
    • /
    • 2015
  • Phosphodiesterase type 5 inhibitors (PDE-5 inhibitors) are used in the treatment of erectile dysfunction. In recent years, a number of reports have been conducted on dietary supplements contaminated with PDE-5 analogues. In this study, 58 analogues of PDE-5 inhibitors were sorted into five groups: tadalafil, sildenafil, hongdenafil, vardenafil, and other analogues. These analogues were then evaluated using a liquid chromatography-quadrupole-time of flight mass spectrometry (LC-QTOF-MS) electrospray ionization mass method. Each compound has a unique fragmentation ion, which can be easily analyzed qualitatively. The fragmentation pathways of the analogues were elucidated based on the QTOF-MS and MS/MS data. Common ions were confirmed for each group by analyzing the structural characteristics and fragmentation pathways. Specifically, common ions were observed at m/z 169.08 and 135.04 (tadalafil analogues), m/z 311.15 and 283.12 (sildenafil analogues and hongdenafil analogues), and m/z 312.16 and 151.09 (vardenafil analogues). The advantage of this method is that the structure of unknown components can be determined by interpreting the product ions. Hence, the developed method can be used for the identification of unknown compounds. Fragmentation pathways may also aid in the detection and identification of PDE-5 inhibitor analogues.

TLR-1, TLR-2, and TLR-6 MYD88-dependent signaling pathway: A potential factor in the interaction of high-DNA fragmentation human sperm with fallopian tube epithelial cells

  • Zahra Zandieh;Azam Govahi;Azin Aghamajidi;Ehsan Raoufi;Fatemehsadat Amjadi;Samaneh Aghajanpour;Masoomeh Golestan;Reza Aflatoonian
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.1
    • /
    • pp.44-52
    • /
    • 2023
  • Objective: The DNA integrity of spermatozoa that attach to fallopian tube (FT) cells is higher than spermatozoa that do not attach. FT epithelial cells can distinguish normal and abnormal sperm chromatin. This study investigated the effects of sperm with a high-DNA fragmentation index (DFI) from men with unexplained repeated implantation failure (RIF) on the Toll-like receptor (TLR) signaling pathway in human FT cells in vitro. Methods: Ten men with a RIF history and high-DFI and 10 healthy donors with low-DFI comprised the high-DFI (>30%) and control (<30%) groups, respectively. After fresh semen preparation, sperm were co-cultured with a human FT epithelial cell line (OE-E6/E7) for 24 hours. RNA was extracted from the cell line and the human innate and adaptive immune responses were tested using an RT2 profiler polymerase chain reaction (PCR) array. Results: The PCR array data showed significantly higher TLR-1, TLR-2, TLR-3, TLR-6, interleukin 1α (IL-1α), IL-1β, IL-6, IL-12, interferon α (IFN-α), IFN-β, tumor necrosis factor α (TNF-α), CXCL8, GM-CSF, G-CSF, CD14, ELK1, IRAK1, IRAK2, IRAK4, IRF1, IRF3, LY96, MAP2K3, MAP2K4, MAP3K7, MAP4K4, MAPK8, MAPK8IP3, MYD88, NFKB1, NFKB2, REL, TIRAP, and TRAF6 expression in the high-DFI group than in the control group. These factors are all involved in the TLR-MyD88 signaling pathway. Conclusion: The MyD88-dependent pathway through TLR-1, TLR-2, and TLR-6 activation may be one of the main inflammatory pathways activated by high-DFI sperm from men with RIF. Following activation of this pathway, epithelial cells produce inflammatory cytokines, resulting in neutrophil infiltration, activation, phagocytosis, neutrophil extracellular trap formation, and apoptosis.

Induction of p21 and apoptosis by C11 in human hepatocarcinoma cells

  • Kim, Won-Ho;Kang, Kyung-Hwa;Choi, Kyung-Hee
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1998.10b
    • /
    • pp.360-360
    • /
    • 1998
  • C11, a chloride-containing VK3 analog, acts as a mediator of programmed cell death in SK-Hep-1 cell lines, but its molecular mechanisms linked to cell death are not understood. In this study, we investigated the expression of p21 gene and its relationship to apoptosis induced by C11. In SK -hep-1 cells, the addition of C11 resulted in time-dependent growth suppression and DNA fragmentation characteristics of apoptosis. p21 protein was induced during this process, while the protein level of p53 was not changed at the same condition. This apoptotic cell death with p21 induction was also observed in the Hep3B cells lacking functional p53 after treatment of C11. These results suggest that C11-induced apoptosis is associated with up-regulation of p21 protein in p53-independent pathway. Next, in order to confirm whether the p53-independent p21 induction is required for C11-induced apoptosis, we introduced the p21 gene into Hep3B. Overexpression of p21 did not affect the expression of the bcl-2 gene, but DNA fragmentation and PARa cleavage were significantly increased. These data indicate that p21 is involved in C11-induced apoptosis. Although Bcl-2 has been implicated to interfere with an essential signaling molecule involved in the apoptosis pathway, its molecular mechanism and target molecule are poorly understood. To determine the effects of bcl-2 overexpression on apoptosis and to investigate whether BcI-2 interfers with the p53-independent p21 pathway, we transfected the bcl-2 expression vector into SK - Hep-1 cels. Overexpression of Bcl-2 prevented C11-induced apoptosis. Taken together, C11-induced apoptosis is regulated by p52-independent p21 pathway and bcl-2 may inhibit functional activity of p21, therebe may inhibit the C11-induced apoptosis.ptosis.

  • PDF

Neuroprotective effects of three flavonoids from Acer okamotoanum against neurotoxicity induced by amyloid beta in SH-SY5Y cells

  • Ji Hyun Kim;Sanghyun Lee;Eun Ju Cho
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.227-237
    • /
    • 2022
  • Amyloid beta (Aβ) is produced from an amyloid precursor protein by the activation of the amyloidogenic pathway, and it is widely known to cause Alzheimer's disease (AD). In this study, we investigated the neuroprotective effects of three flavonoids, quercitrin, isoquercitrin, and afzelin, from Acer okamotoanum against Aβ-induced neurotoxicity in SH-SY5Y neuronal cells. Aβ25-35 treatments resulted in decreased cell viability and increased levels of nuclei condensation and fragmentation. However, an isoquercitrin treatment dose-dependently increased cell viability and decreased nuclei condensation and fragmentation levels. SH-SY5Y cells treated with Aβ25-35 showed increased reactive oxygen species (ROS) production compared to that from cells not treated with Aβ25-35. However, treatment with the three flavonoids significantly inhibited ROS production compared to an Aβ25-35-treated control group, indicating that the three flavonoids blocked neuronal oxidative stress. For a closer examination of the neuroprotective mechanisms, we measured the expressions of the non-amyloidogenic pathway-related proteins of a disintegrin and metalloprotease 10 (ADAM10) and the tumor necrosis factor-α converting enzyme (TACE). An isoquercitrin treatment enhanced the expressions of ADAM10 compared to the control group. In addition, the three flavonoids activated the non-amyloidogenic pathway via the upregulation of TACE. In conclusion, we demonstrated neuroprotective effects of three flavonoids from A. okamotoanum, in particular isoquercitrin, on neurotoxicity by the regulation of the non-amyloidogenic pathway in Aβ25-35-treated SH-SY5Y cells. Therefore, we suggest that flavonoids from A. okamotoanum may have some potential as therapeutics of AD.

Apoptotic Pathway Induced by Dominant Negative ATM Gene in CT-26 Colon Cancer Cells (CT-26 대장암 세포에서 Dominant Negative ATM 유전자에 의하여 유도되는 세포자멸사의 경로)

  • Lee, Jung Chang;Yi, Ho Keun;Kim, Sun Young;Lee, Dae Yeol;Hwang, Pyoung Han;Park, Jin Woo
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.679-686
    • /
    • 2003
  • Purpose : Ataxia telangiectasia mutated(ATM) is involved in DNA damage responses at different cell cycle checkpoints, and signalling pathways associated with regulation of apoptosis in response to ionizing radiation(IR). However, the signaling pathway that underlies IR-induced apoptosis in ATM cells has remained unknown. The purpose of this study was, therefore, to investigate the apoptotic pathway that underlies IR-induced apoptosis in a CT-26 cells expressing dominant negative ATM (DN-ATM). Methods : We generated a replication-deficient recombinant adenovirus encoding the DN-ATM(Ad/DN-ATM) or control adenovirus encoding no transgene(Ad/GFP) and infected adenovirus to CT-26 cells. After infection, we examined apoptosis and apoptotic pathway by [$^3H$]-thymidine assay, DNA fragmentation, and Western immunoblot analysis. Results : DN-ATM gene served as the creation of AT phenotype in a CT-26 cells as revealed by decreased cell proliferations following IR. In addition, IR-induced apoptosis was regulated through the reduced levels of the anti-apoptotic protein Bcl-2, the increased levels of the apoptotic protein Bax, and the activation of caspase-9, caspase-3, and PARP. Conclusion : These results indicate that the pathway of IR-induced apoptosis in CT-26 cells expressing DN-ATM is mediated by mitochondrial signaling pathway involving the activation of caspase 9, caspase 3, and PARP.

Fungal Taxol Extracted from Cladosporium oxysporum Induces Apoptosis in T47D Human Breast Cancer Cell Line

  • Raj, Kathamuthu Gokul;Sambantham, Shanmugam;Manikanadan, Ramar;Arulvasu, Chinnansamy;Pandi, Mohan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6627-6632
    • /
    • 2014
  • Purpose: The present study concerns molecular mechanisms involved in induction of apoptosis by a fungal taxol extracted from the fungus Cladosporium oxysporum in T47D human breast cancer cells. Materials and Methods: Apoptosis-induced by the fungal taxol was assessed by MTT assay, nuclear staining, DNA fragmentation, flow cytometry and pro- as well as anti-apoptotic protein expression by Western blotting. Results: Our results showed inhibition of T47D cell proliferation with an $IC_{50}$ value of $2.5{\mu}M/ml$ after 24 h incubation. It was suggested that the extract may exert its anti-proliferative effect on human breast cancer cell line by suppressing growth, arresting through the cell cycle, increase in DNA fragmentation as well as down-regulation of the expression of NF-${\kappa}B$, Bcl-2 and Bcl-XL and up-regulation of pro-apoptotic proteins like Bax, cyt-C and caspase-3. Conclusions: We propose that the fungal taxol contributes to growth inhibition in the human breast cancer cell through apoptosis induction via a mitochondrial mediated pathway, with possible potential as an anticancer therapeutic agent.