• Title/Summary/Keyword: fractured-zone

Search Result 148, Processing Time 0.032 seconds

Dipole-Dipole Resistivity Survey on the Side of Han River near Nanjido Landfill (난지도에 인접한 한강변에서의 쌍극자-쌍극자 전기탐사)

  • Lee, Kiehwa;Kwon, Byung-Doo;Oh, Seok-Hoon;Kim, Cha-Seop
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.335-343
    • /
    • 1996
  • The dipole-dipol electrical resistivity survey was conducted to investigate the probable contamination of the Han river by leachate from the near-by Nanjido Landfill. The survey line of 3 km was set along the unpaved road toward the Han river. For the convenience of the field work, the survey line was divided into four segments. The complete two-dimensional resistivity section was constructed by connecting the inversion result of each segment. Gravity survey was also carried out along the profile parallel to the resistivity line. Near surface resistivity generally appeared to be of very low value in most part of the survey area and the boundary between the alluvium layer and underlying basement rocks is well discriminated on the resistivity section. These results agree well with those of the preceding Schlumberger depth sounding made at adjacent area by Lee and fun (1995). The variation of thickness of the alluvium layer delineated by gravity anomaly profile also correlates well with the result of the resistivity survey on the qualitative basis. The problem of contamination by leachate from the Nanjido Landfill, where various waste materials have been dumped without any proper treatment facilities, has been remains unsolved yet. Therefore, we present the most probable passages of leachate flow based on the survey results and have briefly discussed about measure for contamination control. Considering the thickness of alluvium and the possible existence of fractured zone, the middle point between 1st and 2nd landfill and the midst of 1st landfill are the most hazardous regions to make leachates flow into the Han river. Since large amounts of leachates are observed from the test wells located on the lines extending from the border between the 1st and 2nd landfill and the middle of the lst landfill, contamination protection barriers are strongly recommended near these regions.

  • PDF

Influence of EDZ on the Safety of a Potential HLW Repository

  • Hwang Yong-Soo;Kang Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.253-262
    • /
    • 2004
  • Construction of tunnels in a deep crystalline host rock for a potential High-Level Radioactive Waste(HLW) repository inevitably generates an excavation disturbed zone (EDZ). There have been a series of debates on whether a permeability in an EDZ increases or not and what would be the maximum depth of an EDZ. Recent studies show mixed opinions on permeability. However, there has been an international consensus on the thickness of an EDZ; 30 cm for TBM and 1 meter for controlled blast. One of the impacts of an EDZ is on determining the distance between adjacent deposition holes. The void gap by the excavation hinders relaxation of temperature profiles so that the current Korean reference designing distance between holes should be stretched out more to keep the maximum temperature in a buffer region below 100 degrees Celsius. The other impact of an EDZ is on the long-term post closure radiological safety. To estimate the impact, the reference scenario, the well scenario, is chosen. Released nuclides diffuse through a bentonite buffer region experiencing strong sorption and reach a fracture surrounded by a porous medium. Inside a fractured porous region, radionuclides migrate by advection and dispersion with matrix diffusion into a porous medium. Finally, they reach a well assumed to be a source of potable water for local residents. The annual individual dose is assessed on this well scenario to find out the significance of an EDZ. A profound sensitivity study was performed, but all results show that the impact is negligible. Even though the role of an EDZ turns out to be limited on overall safety assessment, still it is worthwhile to study the chemical role of an EDZ, such as a potential source for natural colloids, potential sealing of an open fracture by fine clay particles generated by the process of an EDZ, and alteration of a sorption mechanism by an EDZ in the future.

  • PDF

Fracture Behavior of Polycarbonate/Polyestercarbonate Blends (폴리카보네이트/폴리에스터카보네이트 블렌드의 파괴 거동)

  • Lee, Yong-Bum;Lee, Choon-Soo;Kim, Dae-Sik;Kim, Jong-Hyun;Jho, Jae-Young;Lee, Sang-Soo
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.537-542
    • /
    • 2011
  • Fracture behaviors of polycarbonate (PC)/polyestrercarbonate (PEC) blends and their miscibility have been examined to find out the mechanism of ductilie-brittle transition of fracture behavior which would be a main governing factor on the thickness sensitivity of impact strength of PC. $T_g$ measurement showed that PEC with a carbonate content higher than 30 mol% was miscible with PC. In the notched Izod impact test of PC, ductile-brittle transition occurred in the range of 4 to 5 mm thickness. The impact strength of miscible PC/PEC5 blends ductile-fractured in the thin specimens decreased with increasing PEC5 content, which was in accordance with the decrease of elongation at break in tensile test. In the brittle fracture of the thick specimens, the impact strength was well correlated with the plastic zone size in the vicinity of the notch tip.

Laboratory Study on the Electrical Resistivity Characteristics with Contents of Clay Minerals (점토광물의 함유량에 따른 전기비저항 특성에 관한 실험적 연구)

  • Park Mi-Kyung
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.3
    • /
    • pp.218-223
    • /
    • 2005
  • This study considers to electrical resistivity characteristics for clay minerals types and contents in fractured and fault zone. The electrical resistivity is measured for an artificial agar specimen with clay minerals instead of a natural rock. The artificial agar specimen with clay minerals was special worked in study. The clay minerals used are Kaolinite and Montmorillonite in test, the clay mineral contents increases until $0\~40\%$ to the same specimen. As results, the electrical resistivity of the specimen decreased gradually as the clay mineral contents increases for all types of clay minerals. Montmorillonite shows remarkably lower resistivity than Kaolinite, although its clay content is fewer than that of Kaolinite. Also, a proposed experimental expression shows a good correlation coefficient as high as 0.89 or more in all clay minerals.

Development of machine learning framework to inverse-track a contaminant source of hazardous chemicals in rivers (하천에 유입된 유해화학물질의 역추적을 위한 기계학습 프레임워크 개발)

  • Kwon, Siyoon;Seo, Il Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.112-112
    • /
    • 2020
  • 하천에서 유해화학물질 유입 사고 발생 시 수환경 피해를 최소화하기 위해 신속한 초기 대응이 필요하다. 따라서, 본 연구에서는 수환경 화학사고 대응 시스템 구축을 위해 하천 실시간 모니터링 지점에서 관측된 유해화학물질의 농도 자료를 이용하여 발생원의 유입 지점과 유입량을 역추적하는 프레임워크를 개발하였다. 본 연구에서 제시하는 프레임워크는 첫 번째로 하천 저장대 모형(Transient Storage Zone Model; TSM)과 HEC-RAS 모형을 이용하여 다양한 유량의 수리 조건에서 화학사고 시나리오를 생성하는 단계, 두번째로 생성된 시나리오의 유입 지점과 유입량에 대한 시간-농도 곡선 (BreakThrough Curve; BTC)을 21개의 곡선특징 (BTC feature)으로 추출하는 단계, 최종적으로 재귀적 특징 선택법(Recursive Feature Elimination; RFE)을 이용하여 의사결정나무 모형, 랜덤포레스트 모형, Xgboost 모형, 선형 서포트 벡터 머신, 커널 서포트 벡터 머신 그리고 Ridge 모형에 대한 모형별 주요 특징을 학습하고 성능을 비교하여 각각 유입 위치와 유입 질량 예측에 대한 최적 모형 및 특징 조합을 제시하는 단계로 구축하였다. 또한, 현장 적용성 제고를 위해 시간-농도 곡선을 2가지 경우 (Whole BTC와 Fractured BTC)로 가정하여 기계학습 모형을 학습시켜 모의결과를 비교하였다. 제시된 프레임워크의 검증을 위해서 낙동강 지류인 감천에 적용하여 모형을 구축하고 시나리오 자료 기반 검증과 Rhodamine WT를 이용한 추적자 실험자료를 이용한 검증을 수행하였다. 기계학습 모형들의 비교 검증 결과, 각 모형은 가중항 기반과 불순도 감소량 기반 특징 중요도 산출 방식에 따라 주요 특징이 상이하게 산출되었으며, 전체 시간-농도 곡선 (WBTC)과 부분 시간-농도 곡선 (FBTC)별 최적 모형도 다르게 산출되었다. 유입 위치 정확도 및 유입 질량 예측에 대한 R2는 대부분의 모형이 90% 이상의 우수한 결과를 나타냈다.

  • PDF

Study on Improving Proximity Evaluation Standards when Excavating Tunnels Adjacent to Urban Infrastructure (도시기반시설 인접 터널 굴착시 근접도 평가기준 개선방안 연구)

  • Chul Lee;Guk-Hwan Cho
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.283-300
    • /
    • 2024
  • Due to the revitalization of urban development, the number of cases of excavating tunnels adjacent to existing subways is increasing. This may affect the structure and track of the existing subway, resulting in reduced stability and usability. In this study, we verified the adequacy of the proximity evaluation range to ensure the stability of new tunnels and existing subways when excavating adjacent to tunnels, and proposed a quantitative correction rate considering various conditions. Conditions for applying the correction rate considered rock grade, geologically weak section, structurally weak section, and structural deterioration section. It is hoped that a more accurate proximity evaluation will be performed by applying a quantitative correction rate that considers rock and geological conditions, structure status, etc. to the proximity evaluation standard.

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.

Numerical Study on the Strength Safety of High Pressure Gas Cylinder (고압가스 압력용기의 강도안전성에 관한 수치해석적 연구)

  • Kim, Chung-Kyun;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • The strength safety of high pressure gas cylinder has been analyzed by using a finite element method. In this study, the internal gas pressures of a steel bombe include a service charging pressure of $9kg/cm^2$, high limit charging pressure of $18.6kg/cm^2$, high limit of safety valve operation pressure $24.5kg/cm^2$, and hydraulic testing pressure of $34.5kg/cm^2$. The computed FEM results indicate that the strength safety for a service charging pressure of $9kg/cm^2$ and high limit charging pressure of $18.6kg/cm^2$ is safe because the stress of a gas cylinder is within yield strength of steel. But the stress for a hydraulic testing pressure of $34.5kg/cm^2$ sufficiently exceeds the yield strength and remains under the tensile strength. If the hydraulic testing pressures frequently apply to the gas cylinder, the bombe may be fractured because a fatigue residual stress is accumulated on the lower round end plate due to a plastic deformation. The computed results show that the concentrated force in which is applied on a skirt zone does not affect to the lower round end plate, and the most weak zone of a bombe is a middle part of a lower round end plate between a bombe body and a skirt for a gas pressure. Thus, the FEM results show that the profile of a lower round end plate is an important design parameter of a high pressure gas cylinder.

Evaluation of Acoustic Emission Signals Characteristics of Post Weld Heat Treated Multi-Pass Weld Block for SA-516 Pressure Vesssel Steel (SA-516강 다층용접부 용접후 열처리재의 음향방출신호 특성 평가)

  • Na, Eui-Gyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.529-535
    • /
    • 2011
  • In this study, evaluation of acoustic emission signals characteristics for the post weld heat treated (PWHT) multi-pass weldment and weldment was dealt. Charpy standard specimens were taken from the lowest, middle and highest regions of the weld block. Pre-crack was made using the repeated load. Four point bend and AE tests were conducted simultaneously. Regardless of the specimens, AE signals were absent within elastic region and produced in the process of plastic deformation. AE signals for all specimens were not emitted after the maximum load. Value of signal strength for the all PWHT specimens was lower than that of the weldment. Besides, relations of plastic deformation zone size and accumulated AE counts for the PWHT specimens were more simple compared with the weldment. In case of the PWHT specimen, particles on the fractured surface decreased prominently compared with the weldment due.to PWHT. From these results, it can be concluded that PWHT was effective in reducing the AE sources for the weldment.

Preliminary Report for KD Subsurface Oil Storage (원유 비축시설 건설을 위한 예비조사)

  • Han, Jeong Sang;Huh, Ginn
    • Economic and Environmental Geology
    • /
    • v.13 no.3
    • /
    • pp.185-192
    • /
    • 1980
  • The rocks exposed in the investigation area are andesite of Late Cretaceous age, and syenite and aplitic granite of Bulgugsa Series of Early Cretaceous Period, which is intruded in the older andesitic rock. The strike and dip of major joint is $N10^{\circ}$ to $60^{\circ}E$, and $70^{\circ}SE$ to vertical respectively. According to seismic exploration, lower velocity zone, deemed to be fractured and/or crushed zone, is appeared along the gully center of east flank of the area. Test drilling shows that andesite bedrock is mostly very hard, massive, and very fine to medium grained and has almost 100 percent RQD and core recovery. In comparision with andesitic bedrock, intruded syenite cores show that it is highly crush especially at the depth from 55m to 63m.

  • PDF