• Title/Summary/Keyword: fracture zones

Search Result 190, Processing Time 0.027 seconds

Rates of Sediment Accumulation and Particle Mixing in the KODOS Site of the Clarion-Clipperton Fracture Zones (클라리온-클리퍼톤 KODOS 지역 퇴적물의 퇴적율과 입자혼합율)

  • MOON, DEOK SOO;KIM, KEE HYUN
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.288-301
    • /
    • 1995
  • Rates of the sedimentation and particle mixing have been estimated by applying uranium-series disequilibrium techniques to three sediment cores collected from the korea Deep Ocean Study (KODOS) site between the clarion and Clipperton Fracture Zones (CCFZ) of the Equatorial Pacific. Sedimentation rates based on the profiles of excess /SUP 230/Th activity and /SUP 230/ Th/SUB xs//SUP 232/ Th activity ratios at the southeastern part of the study area were estimated to be in the order of a few millimeters per thousand year, while at the northwestern part a factor of ten lower. Excess activities of /SUP 230/Th and /SUP 230/Th ratios showed intervals of constant values in the upper part of the sediment cores, probably generated by biological particle mixing. A "two-box" advection-diffusion steady state mixing model was employed in order to estimate particle mixing rates in the upper and the lower layers, based on the distribution profiles of excess /SUP 210/Pb activities. Particle mixing coefficients were estimated to be in the order of 10$^1$ cm$^2$/y in the upper layer and 10/SUP -1/-10/SUP 0/ cm$^2$/y in the lower layer.

  • PDF

Correlation Study of Microstructure and Mechanical Properties in Heat Affected Zones of API X80 Pipeline Steels containing Complex Oxides (복합산화물이 형성된 API X80 라인파이프강의 용접열영향부 미세조직과 기계적 특성의 상관관계 연구)

  • Shin, Sang Yong;Oh, Kyoungsik;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.59-70
    • /
    • 2009
  • This study is concerned with the correlation between microstructure and mechanical properties in heat affected zones (HAZs) of API X80 pipeline steels containing complex oxides. Three kinds of specimens were fabricated by varying alloying elements of Ti, Al, and Mg to form complex oxides, and their microstructures, Vickers hardness, Charpy impact properties were investigated. The number of complex oxides increased as the excess amount of Ti, Al, and Mg was included in the steels. The simulated HAZs containing a number of oxides showed a high volume fraction of acicular ferrite region because oxides acted as nucleation sites for acicular ferrite. According to the correlation study between thermal input, volume fraction of acicular ferrite region, and Charpy impact properties, the ductile fracture occurred predominantly when the volume fraction of acicular ferrite region was 65% or higher, and the Charpy absorbed energy was excellent over 200 J. When the volume fraction of acicular ferrite region was 35% or lower, the Charpy absorbed energy was poor below 50 J as the brittle cleavage fracture occurred. These findings suggested that the active nucleation of acicular ferrite in the oxide-containing steel HAZs was associated with the great improvement of Charpy impact properties of the HAZs.

Rock bridge fracture model and stability analysis of surrounding rock in underground cavern group

  • Yu, Song;Zhu, Wei-Shen;Yang, Wei-Min;Zhang, Dun-Fu;Ma, Qing-Song
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.481-495
    • /
    • 2015
  • Many hydropower stations in southwest China are located in regions of brittle rock mass with high geo-stresses. Under these conditions deep fractured zones often occur in the sidewalls of the underground caverns of a power station. The theory and methods of fracture and damage mechanics are therefore adopted to study the phenomena. First a flexibility matrix is developed to describe initial geometric imperfections of a jointed rock mass. This model takes into account the area and orientation of the fractured surfaces of multiple joint sets, as well as spacing and density of joints. Using the assumption of the equivalent strain principle, a damage constitutive model is established based on the brittle fracture criterion. In addition the theory of fracture mechanics is applied to analyze the occurrence of secondary cracks during a cavern excavation. The failure criterion, for rock bridge coalescence and the damage evolution equation, has been derived and a new sub-program integrated into the FLAC-3D software. The model has then been applied to the stability analysis of an underground cavern group of a hydropower station in Sichuan province, China. The results of this method are compared with those obtained by using a conventional elasto-plastic model and splitting depth calculated by the splitting failure criterion proposed in a previous study. The results are also compared with the depth of the relaxation and fracture zone in the surrounding rock measured by field monitoring. The distribution of the splitting zone obtained both by the proposed model and by the field monitoring measurements are consistent to the validity of the theory developed herein.

Surface Fracture Behaviors of Unidirectional and Cross Ply Glass Fiber/Epoxy Lamina-Coated Glass Plates under a Small-Diameter Steel Ball Impact (일방향 및 직교형 유리섬유/에폭시 복합재로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동)

  • Chang, Jae-Young;Choi, Nak-Sam
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.33-40
    • /
    • 2009
  • Fiber orientation effects on the impact surface fracture of the glass plates coated with the glass fiber/epoxy lamina layer were investigated using a small-diameter steel-ball impact experiment. Four kinds of materials were used: soda-lime glass plates, unidirectional glass fiber/epoxy layer(one ply, two plies)-coated, crossed glass tiber/epoxy layer (two plies)-coated glass plates. The maximum stress and absorbed fracture energy were measured on the back surface of glass plates during the impact. With increasing impact velocity, various surface cracks such as ring, cone, radial and lateral cracks appeared near the impacted site of glass plates. Cracks in the plate drastically diminished by glass fiber coating. The tiber orientation guided the directions of delamination and plastic deformation zones between the tiber layer and the glass plate. Impact surface-fracture indices expressed in terms of the maximum stress and absorbed energy could be used as an effective evaluation parameter of the surface resistance.

A novel semi-empirical technique for improving API X70 pipeline steel fracture toughness test data

  • Mohammad Reza Movahedi;Sayyed Hojjat Hashemi
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.351-361
    • /
    • 2024
  • Accurate measurement of KIC values for gas pipeline steels is important for assessing pipe safety using failure assessment diagrams. As direct measurement of KIC was impossible for the API X70 pipeline steel, multi-specimen fracture tests were conducted to measure JIC using three-point bend geometry. The J values were calculated from load-displacement (F-δ) plots, and the associated crack extensions were measured from the fracture surface of test specimens. Valid data points were found for the constructed J-Δa plot resulting in JIC=356kN/m. More data points were added analytically to the J-Δa plot to increase the number of data points without performing additional experiments for different J-Δa zones where test data was unavailable. Consequently, displacement (δ) and crack-growth (Δa) from multi-specimen tests (with small displacements) were used simultaneously, resulting in the variation of Δa-δ (crack growth law) and δ-Δa obtained for this steel. For new Δa values, corresponding δ values were first calculated from δ-Δa. Then, corresponding J values for the obtained δ values were calculated from the area under the F-δ record of a full-fractured specimen (with large displacement). Given Δa and J values for new data points, the developed J-Δa plot with extra data points yielded a satisfactory estimation of JIC=345kN/m with only a -3.1% error. This is promising and showed that the developed technique could ease the estimation of JIC significantly and reduce the time and cost of expensive extra fracture toughness tests.

Gravimetric and magnetic studies in an Yangsan fault area near Angang (안강부근 양산단층 지역에서의 중력 및 지자기 연구)

  • Kim, Gi Yeong;Lee, Gwang Ja
    • Journal of the Korean Geophysical Society
    • /
    • v.1 no.1
    • /
    • pp.31-40
    • /
    • 1998
  • Gravimetric and magnetic surveys were conducted in order to reveal near-surface structures such as basements, faults, and fracture zones in an area near Angang, where the Yangsan fault is believed to pass through. Along two lines approximately perpendicular to the strike of the major fault, gravity and magnetic data were measured at 67 stations with a 15 m interval and at 296 stations with a 3 m interval, respectively. Average depth to the magnetic basement is estimated using the spectral analysis method to be 8.5 and 10.0 m along lines located to the east and the west of the Hyeongsan river, respectively. Average value of reduced gravity on the east line is higher than that on the west by the amount of 1.71 mGal, which indicates that the basement rocks are more severely fractured in the western part. Forward gravity modeling along the east line indicates that a fracture zone extends westward from a fault located 210 m west of the eastern end. Density and depth to the bottom of the fracture zone are estimated to be 2.44 g/cm3 and 70 m, respectively. The gravity model study also indicates presence of a small graben, 190 m wide and 3.5 m deep on an average, on the basement surface. The earth surface above the graben is approximately 44 cm lower than the nearby surface. This indicates that the graben might have been formed by recent fault movements.

  • PDF

Relation of Groundwater Flow Rate and Fracture System Associated with Waterway Tunnel Excavation (도수로터널 굴착에 따른 지하수 유출량과 단열의 관련성)

  • 이병대;조병욱;성익환;함세영;이춘오
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.327-337
    • /
    • 2001
  • To verify the characteristics of groundwater inflow accompanied by the tunnel excavation, the flow rate was measured before and after primary grouting. The relationship between the flow rate and fracture system was also analyzed. The initial flow rate was estimated as 120,990 m$^3$/day through six zones, which were characterized by a large amount of inflow before the primary grouting. After the primary grouting, although considerable amount of inflow was still recognized at the six zones, the flow rate was greatly reduced as 42,844 m$^3$/day. However, great recovery of water levels was not observed. Groundwater flow into the tunnel by excavation of the tunnel is mainly controlled by the fracture system that include faults and joints developed in the host rocks. Four sets of discontinuities affecting on the network of grondwater inflow in the study area were identified as follows: N60-85$^{\circ}C$ W.25$^{\circ}$SW/80$^{\circ}$SW(TSet 1), N40-50$^{\circ}$E.85$^{\circ}$SE/85$^{\circ}$NE(TSet 2), N10-20$^{\circ}$E.85$^{\circ}$SE(TSet 3), and N70-80$^{\circ}$E.80SE(TSet 4).

  • PDF

Fracture Developing History and Density Analysis based on Grid-mapping in Bonggil-ri, Gyeongju, SE Korea (경주시 봉길리 지역의 단열발달사 및 단열밀도 해석)

  • Jin, Kwang-Min;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.455-469
    • /
    • 2007
  • The study area, Bonggil-ri, Gyeongju, SE Korea, is composed of Cretaceous sedimentary rocks, and Tertiary igneous rocks and dykes. A research on fracture developing history and density distribution was carried out on well exposed Tertiary granites. The fractures developed in this area have the following sequence; NW-SE trending duo-tile shear bands (set a), NNW-SSE trending extensional fractures (set d), WNW-ESE trending extensional or normal fractures (set b), NE-SW trending right-lateral fractures (set c), WNW-ESE trending reverse fault reactivated from normal faults (set e) and NW-SE trending left-lateral faults reactivated from shear bands (set a) under brittle condition. According to the result of fracture density analysis, the fracture density in this area depends on rock property rather than rock age, and also higher fracture density is observed around fault damage zones. However, this high fracture density may also be related to the cooling process associated with dyke intrusion as well as rock types and fault movement. Regardless of the reason of the high fracture density, high fracture density itself contributes to fluid flow and migration of chemical elements.

Resistance Curves of Propagating Cracks for Concrete Three-Point Bend Specimens (콘크리트 삼점 휨시험편의 성장하는 균열에 대한 저항곡선)

  • 연정흠
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.568-574
    • /
    • 2001
  • From measured responses of concrete three-point bend tests, the average values of the responses have been calculated. The fracture behavior of continuously propagating concrete crack has been analyzed from the average responses. The experimental parameters of this study were the initial notch sizes of 25.4㎜ and 6.4 ㎜ and the processing times of 2,000 sec. and 20 sec . The different notch sizes were used for the effects of the size of fracture process zone and specimen geometry, and the processing times for those of initial creep. However the load-point displacement rate in this study did not affect the experimental responses seriously. The average loads were calculated from the average external work of a series of tests, and average crack lengths were determined by using strain gages. Before the peak load, the resistance curve could be determined from the size of fracture process zone, but unstable crack propagation of 88㎜ occurred at the load-point displacement of 0.088∼0.154㎜ after the peak load. The average fracture energy density G$\_$F/$\^$ave/ = 115 N/m occurred during the unstable crack propagation. The fracture process zones were fully developed at the crack length of 111㎜, and the sizes of fracture process zone for initial notches of 25.4㎜ and 6.4㎜ were 86㎜ and 105㎜, respectively. Average fracture energy densities of the resistance curves after full development of fracture process zone were 229 N/m for the initial notch of 25.4㎜ and 284 N/m for 6.4㎜. The values were more than twice of G$\_$F/$\^$ave/.

A Modeling Study on the AVO and Complex Trace Analyses of the Fracture Bone Reflection (파쇄대 반사에너지의 AVO 및 복소트레이스 분석에 관한 모형연구)

  • Han Soo-Hyung;Kim Ji-Soo;Ha Hee-Sang;Min Dong-Joo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.33-42
    • /
    • 1999
  • AVO and complex trace analyses mainly used to characterize natural gas reservoir were tested in this paper for a possible application to detection of major geological discontinuities such as fracture zones. The test data used in this study were calculated by utilizing a viscoelastic numerical program which was based on the generalized Maxwell body for a horizontal fracture model. In AVO analysis of a horizontal fracture zone, p-wave reflection appears to be variant depending upon the acoustic-impedence contrast and the offset distance. The fracture zone is also effectively clarified both in gradient stack and range-limited stack in which fracture zone reflection is attenuated with the increasing offset distance. In complex attribute plots (instantaneous amplitude, frequency, and phase), the top and bottom of the fracture Tone are characterized by a zone of strong amplitudes and an event of the same phase. Low frequency characteristics appear at the fracture zone and the underneath. Amplitude attenuation and waveform dispersion are dependent on Q-contrast between the fracture zone and the surrounding media. They were properly compensated by optimum inverse Q-filtering.

  • PDF