• Title/Summary/Keyword: fracture zones

Search Result 191, Processing Time 0.033 seconds

Characteristics of the Hydraulic Conductivity of Carbonate Aquifers in Gangwon Province (강원도 탄산염지역 대수층의 수리전도도 특성)

  • Park, Young-Yun;Lee, Jin-Yong;Lim, Hong-Gyun;Park, Yu-Chul
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.79-85
    • /
    • 2011
  • We investigated the flow properties of groundwater in areas of carbonate rocks at Yeongwol and Jeongseon, Gangwon Province, based on measurements of hydraulic conductivity. Existing hydraulic conductivity data were compiled from 46 wells in the study area. These wells were sunk close to Golji stream and the Joyang and Dong rivers, which flow through the study area. The hydraulic conductivities range from 0.004 to 1.1 m/day, and show a gradually decreasing trend with decreasing well depth (y=-0.003x - 0.927, $r^2$=0.129). The study area was classified into zone A (< 0.1 m/day), zone B (0.1-1.0 m/day), and zone C (> 1 m/day) according to hydraulic conductivity. Zones A, B, and C make up 87% (n = 40), 11 % (n = 5), and 2% (n = 2) of the surface of the study area, respectively. Among the three zones, zone A contains few fractures whereas zone C contains many fractures. These results indicate that groundwater flow in carbonate regions is strongly influenced by the fracture network.

Occurrence and Mineralogy of Sericite Deposit in the Hongjesa Granite from the Bonghwa Area in Kyungsangbuk-do, Korea (경북 봉화지역 홍제사 화강암 내에 배태하는 견운모광상의 산상 및 구성광물)

  • Oh, Ji-Ho;Hwang, Jin-Yeon;Koh, Sang-Mo;Kwack, Kyu-Won;Lee, Hyo-Min;Chi, Se-Jung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.67-83
    • /
    • 2008
  • The sericite ore deposits formed in the Precambrian granitic rock at the Bonghwa area, Kyungsangbuk-do, South Korea. The geochemical and mineralogical characteristics of sericite occurred in Daehyun and Seonghwang mine were analyzed using petrographic microscope, XRD, EPMA, XRF and ICP. An alteration mechanism was also studied. Sericitization occurred within the granitic rock by hydrothermal alteration. From the careful study on the occurrence and mineral assemblage, four alteration zone were clearly identified. These zones reflect progressive hydrothermal alteration process. All sericites belong to $2M_1$ polytype and their mineralogical and geochemical properties are close to illite. The sericite ores show various colors, but the characteristics of major element compositions and crystal structures are not different. The trace element analysis, however, indicates that the difference in color attribute to the abundance of Cr and Ti: bluish green colored sericite are enriched in Cr and blackish green colored sericite enriched in Ti. The formation of sericite ore deposit in the granitic rocks are closely relate to fracture system such as fault and joint. It is considered that the sericite ore deposits in this area were formed by very simple hydrothermal alteration occurred along the fracture zones in granitic rocks with absence of other hydrothermally altered minerals such as kaolin and pyrophyllite.

Correlation interpretation for surface-geophysical exploration data-Chojeong Area, Chungbuk (지표물리탐사 자료의 상관해석-충북 초정지역)

  • Gwon, Il Ryong;Kim, Ji Su;Kim, Gyeong Ho
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.75-88
    • /
    • 1999
  • A recent major subject of geophysical exploration is research into 3-D subsurface imaging with a composite information from the various geophysical data. In an attempt to interpret Schlumberger sounding data for the study area in 2-D and 3-D view, resistivity imaging was firstly performed and then pseudo-3-D resistivity volume was reconstructed by interpolating several 1-D resistivity plots. Electrical resistivity discontinuities such as fracture zone were successfully clarified in pseudo-3-D resistivity volume. The low resistivity zone mainly associated with fracture zone appears to develop down to granitic basement in the central part of the study area. Seismic velocity near the lineament is estimated to be approximately as small as 3,000 m/s, and weathering-layer for the southeastern part is interpreted to be deeper than for the northwestern part. Geophysical attributes such as electrical resistivity, seismic velocity, radioactivity for the Chojeong Area were analysed by utilizing a GIS software Arc/Info. The major fault boundaries and fracture zones were resolved through image enhancement of composite section (electrical resistivity and seismic refraction data) and were interpreted to develop in the southeastern part of the area, as characterized by low electrical resistivity and low seismic velocity. However, radioactivity attribute was found to be less sensitive to geological discontinuities, compared to resistivity and seismic velocity attributes.

  • PDF

Paleomagnetism of Three Seamounts Northwest of the Marshall Islands from Magnetic Inversion (자기이상 역산에 의한 마샬제도 북서쪽 세 해저산의 고지자기 해석)

  • Lee, Tae-Gook;Moon, Jai-Woon;Ko, Young-Tak;Jung, Mee-Sook;Kim, Hyun-Sub;Lee, Kie-Hwa
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.559-565
    • /
    • 2004
  • Total magnetic field measurements were performed to study paleomagnetism of three seamounts (OSM7, OSM8-1, and OSM8-2) to the northwest of the Marshall Islands in the western Pacific. The study area is located at the Ogasawara Fracture Zone which is a boundary between the Pigafetta and East Mariana basins. The magnetic parameters and paleopoles of three seamounts were derived from inversion of the measured magnetic field. The goodness-of-fit ratio of OSM7 is too low to be included to the estimation of parameters. The complex magnetic anomalies of center, scarcity of flank rift zones and steep slope at OSM7 suggest that the multiple intrusions of magma converge into the center of volcanic edifice. Inclination calculated from the magnetic anomalies of OSM8-1 and OSM8-2 is $-41.2^{\circ}$, and the paleolatitude calculated from the inclination is $23.6^{\circ}S$. The corresponding paleopoles for OSM8-1 and OSM8-2 are $(24^{\circ}42'W,\;48^{\circ}54'N)\;and\;(18^{\circ}18'W,\;48^{\circ}30'N)$, respectively. In comparison with the apparent polar wander path (APWP) of the Pacific plate, the paleopoles are close to 129-Ma pole. The paleopoles and paleolatitudes of OSM8-1 and OSM8-2 suggest that they were formed at similar time and location. The seamounts have drifted northward about $41^{\circ}$ from the paleolatitude to present latitude of seamounts.

Numerical modeless of the damage, around inclusion in the orthopedic cement PMMA

  • Mohamed, Cherfi;Smail, Benbarek;Bouiadjra, Bachir;Serier, B.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.717-731
    • /
    • 2016
  • In orthopedic surgery and more especially in total arthroplastie of hip, the fixing of the implants generally takes place essentially by means of constituted surgical polymer cement. The damage of this materiel led to the fatal rupture and thus loosening of the prosthesis in total hip, the effect of over loading as the case of tripping of the patient during walking is one of the parameters that led to the damage of this binder. From this phenomenon we supposed that a remain of bone is included in the cement implantation. The object of this work is to study the effect of this bony inclusion in the zones where the outside conditions (loads and geometric shapes) can provoke the fracture of the cement and therefore the aseptic lousing of the prosthesis. In this study it was assumed the presence of two bones -type inclusions in this material, one after we analyzed the effect of interaction between these two inclusions damage of damage to this material. One have modeled the damage in the cement around this bone inclusion and estimate the crack length from the damaged cement zone in the acetabulum using the finite element method, for every position of the implant under the extreme effort undergone by the prosthesis. We noted that the most intense stress position is around the sharp corner of the bone fragment and the higher level of damage leads directly the fracture of the total prosthesis of the hip.

Estimation of the Effective Hydraulic Conductivity in the Granite Area as an Equivalent Continuum Medium (등연속체매질로서의 화강암지역의 유효수리전도도 산출)

  • 김경수;김천수;배대석
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.319-332
    • /
    • 2002
  • This study is focused on the characterization of an effective hydraulic conductivity in each hydrogeologic unit assumed as an equivalent continuum medium in the granitic area. Four boreholes of 3" diameter were installed and a Multi-packer system was facilitated in the selected borehole. Various in-situ tests including the fracture logging, constant injection and fall-off tests, slug and pulse tests were carried out. A hydrogeologic unit was defined into the upper and lower zones based on the variation of fracture properties and hydraulic conductivities. The difference of the result obtained by the various hydraulic tests and the effective characterization techniques on rock mass permeability are also discussed. The effective hydraulic conductivity of the upper unit was measured by two times(5.27E-10 m/s~7.57E-10 m/s) that of the lower unit(2.45E-10 m/s~6.81E-10 m/s)through the constant injection and fall-off tests.

Microstructure of Squeeze-cast Aluminum Matrix Composite Reinforced by Fine Steel Wires (용탕단조한 미세강선 보강 알루미늄 복합재료의 미세조직에 대한 고찰)

  • Jeong, Bong-Yong;Lee, In-Woo;Park, Heung-Il;Kim, Jun-Su;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.455-463
    • /
    • 1994
  • Aluminum matrix composites reinforced by fine steel wires were fabricated by squeeze casting process. Preforms made of fine steel wires were prepared with different surface conditions, namely uncoated(TN), carbo-nitriding treated(TT), and brass coated(TA). Squeeze casting were performed under the pressure of $1500kg/cm^2$ for 3min. during solidification, and pouring temp. of the melt being $750^{\circ}C$ and the steel mold being preheated at $250^{\circ}C$. Microstructural characteristics were evaluated, particularly concerned with the effect of the surface conditions of the preforms. The results obtained from this study are like these. TN specimens show partially non-wetted regions, due to easy formation of oxides on the surface of the fine steel wires. TT specimens show no interfacial reaction between the steel wires and the aluminum alloy matrix, possibly due to the formation of carbo-nitrided zone on the surface of the steel wires. TA specimens show excellent wettabillity between the reinforced steel wires and the aluminum alloy matrix and very thin interfacial zone is formed between them. During the solution hardening treatment of TA specimens, thickness of the interfacial reaction zones were increased with the solution treating time. TA specimens show typical ductile fracture in tensile test, but TT specimens show brittle fracture possibly due to the formation of the brittle hard surface on the steel wires during carbo-nitriding treatments. TA specimens which were reinforced with 40 vol.% of the fine steel wires exhibit high tensile strength of $77.1kgf/mm^2$ and impact value of $8.1kgf-m/cm^2$.

  • PDF

Characteristics of Microwelded BLU CCFL Electrode in Terms of Glass Beading Heat Treatment Temperature (미세 용접된 BLU CCFL 전극의 유리비딩 열처리 온도에 따른 접합부 특성)

  • Kim, Gwang-Soo;Kim, Sang-Duck;Kwon, Hyuk-Dong
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.73-78
    • /
    • 2009
  • Characterization of the microweld CCFL electrode for the TFT-LCD backlight unit was carried out in terms of the glass beading heat treatment conditions. We evaluate the weld zone and parent metal of the microweld CCFL electrodes that were exposed to simulated glass beading heat treatment. The CCFL electrode was composed of the cup made with pure Ni, the pin made with pure Mo and the lead wire made with Ni-Mn alloy. Each part of the electrode was assembled together by micro spot welding process and then the assembled electrodes were exposed to simulated glass beading temperatures of $700^{\circ}C,\;750^{\circ}C$ and $800^{\circ}C$. The microstructures of the microweld CCFL electrode were observed by using optical microscope, scanning electron microscope and EDS. Micro-tensile and microhardness test were also carried out. The results indicated that the grain coarsening in the HAZs(heat affected zones) for both the cup-pin weld and pin-lead wire were exhibited and the grain coarsening of the HAZ for the cup and the lead wire was more obvious than the HAZ of the pin. The micro-tensile test revealed that the fracture occurred at the cup-pin weld zone for all test conditions. The fracture surface could be classified into two parts such as pin portion and cup portion including weld nugget. The failure was seemed to be initiated from the boundary between nugget and pin through the weld joint. The result of the microhardness measurement exhibited that the relatively low hardness value, about 105HV was recorded at the HAZ of the cup. This value was about 50% less than that of the original value of the cup. The reduction of the microhardness was considered as the cause of the grain coarsening due to welding process. It was also appeared that there was no change in electric resistance for the standard electrodes and heat treated electrodes.

Seismic behavior of thin cold-formed steel plate shear walls with different perforation patterns

  • Monsef Ahmadi, H.;Sheidaii, M.R.;Tariverdilo, S.;Formisano, A.;De Matteis, G.
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.377-388
    • /
    • 2021
  • Thin perforated Steel Plate Shear Walls (SPSWs) are among the most common types of seismic energy dissipation systems to protect the main boundary components of SPSWs from fatal fractures in the high-risk zones. In this paper, the cyclic behavior of the different circular hole patterns under cyclic loading is reported. Based on the experimental results, it can be concluded that a change in the perforation pattern of the circular holes leads to a change in the locations of the fracture tendency over the web plate, especially at the plate-frame interactions. Accordingly, the cyclic responses of the tested specimens were simulated by finite element method using the ABAQUS package. Likewise, perforated shear panels with a new perforation pattern obtained by implementing Topology Optimization (TO) were proposed. It was found that the ultimate shear strength of the specimen with the proposed TO perforation pattern was higher than that of the other specimens. In addition, theoretical equations using the Plate-Frame Interaction (PFI) method were used to predict the shear strength and initial stiffness of the considered specimens. The theoretical results showed that the proposed reduced coefficients relationships cannot accurately predict the shear strength and initial stiffness of the considered perforated shear panels. Therefore, the reduced coefficients should be adopted in the theoretical equations based on the obtained experimental and numerical results. Finally, with the results of this study, the shear strength and initial stiffness of these types of perforated shear panels can be predicted by PFI method.

Flow Path of Choosan Spring in Nari Basin, Ulleung Island, South Korea (울릉도 나리분지 추산용천수의 유동 경로)

  • Byeongdae Lee;Min Han;Dong-Hun Kim;Byong-Wook Cho;Chung-Ryul Ryoo
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.207-216
    • /
    • 2024
  • This study clarified the flow path of Choosan Spring, Nari Basin, Ulleung Island, South Korea. The orientations of faults and fractures developed on the inner edge of the caldera were identified as major factors affecting the flow path. The main flow paths include fracture zones oriented N-S and E-W. The spring also flows in a NE or NNE direction under the influence of the irregular shape of the caldera, which slopes to the NNE. Using Entrobacteriaceae species as tracers, it was found that Nari groundwater flows toward Choosan Yongchulso. However, the small number of water samples used in the analysis limits our understanding of the flow path from Sungin Valley to Nari Basin and Choosan Yongchulso.