• Title/Summary/Keyword: fracture zone

Search Result 756, Processing Time 0.036 seconds

Treatment of Fifth Metatarsal Base Fracture Using Tension Band Wiring (인장대 강선 고정술을 이용한 제5 중족골 기저부 골절의 수술적 치료)

  • Ahn, Jong-Kuk;Chung, Hyung-Jin;Bae, Su-Young;Park, Ji-Yong
    • Journal of Korean Foot and Ankle Society
    • /
    • v.15 no.1
    • /
    • pp.18-21
    • /
    • 2011
  • Purpose: To evaluate the clinical and radiological results of internal fixation with tension band wiring for the fracture at the base of fifth metatarsal bone. Materials and Methods: From January 2008 to December 2009, 15 cases with displaced fracture at the base of fifth metatarsal were analyzed and average follow up period was 13.8 months. Lawrence classification was used to classify fracture type. We evaluated clinical results by American Orthopedic Foot Ankle Society (AOFAS) midfoot score and radiological results by union time. Complications was also checked. Results: According to classification, zone I fracture were 11 cases and zone II fracture were 4 cases. Bony union was achieved in all cases after 7 weeks. In the final follow-up, average AOFAS score was 94. There were no complications except hardware irritation. Conclusion: Satisfactory results were obtained after tension band wiring for the fifth Metatarsal base fracture in zone I fracture or comminuted zone II fracture for which it is not easy to be fixed with screw.

Analysis for Fracture Characteristics of Porous Materials by using Cohesive Zone Models (응집영역모델을 이용한 다공질 재료의 파괴 거동 연구)

  • Choi, Seung-Hyun;Ha, Sang-Yul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.552-559
    • /
    • 2009
  • The effect of porosity on the crack propagation is studied by using the cohesive zone model. Standard mode I fracture test were done by using compact tension specimens with various porosities. Load-load line displacement curves and ${\delta}_5$-crack resistance curves for various porosities were obtained from experiments. The cohesive zone model proposed by Xu and Needleman was employed to describe the crack propagation in porous media, and the Gurson model is used for constitutive relation of porous materials. These models were implemented into user subroutines of a finite element program ABAQUS. The fracture mode changes from ductile fracture to brittle fracture as the porosity increases. Numerical calculations agree well with experimental results.

Effect of fiber and aggregate size on mode-I fracture parameters of high strength concrete

  • Kumar, Ch.Naga Satish;Krishna, P.V.V.S.S.R.;Kumar, D.Rohini
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.613-624
    • /
    • 2017
  • In this paper, an experimental investigation was carried out to study the effect of volume fraction of fiber and maximum aggregate size on mode-I fracture parameters of high strength concrete. Total of 108 beams were tested on loading frame with three point loading, the variables in the high strength concrete beams are aggregate size (20 mm, 16 mm and 10 mm) and volume fraction of fibers (0%, 0.5%, 1% and 1.5%). The fracture parameters like fracture energy, brittleness number and fracture process zone were analyzed by the size effect method (SEM). It was found that fracture energy (Gf) increases with increasing the Maximum aggregate size and also increasing the volume of fibers, brittleness number (${\beta}$) decreases and fracture process zone (CF) increases.

Study on the water bursting law and spatial distribution of fractures of mining overlying strata in weakly cemented strata in West China

  • Li, Yangyang;Zhang, Shichuan;Yang, Yingming;Chen, Hairui;Li, Zongkai;Ma, Qiang
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.613-624
    • /
    • 2022
  • A study of the evolution of overburden fractures under the solid-fluid coupling state was conducted based on the geological and mining characteristics of the coal seam depth, weak strata cementation, and high-intensity mining in the mining areas of West China. These mining characteristics are key to achieving water conservation during mining or establishing groundwater reservoirs in coal mines. Based on the engineering background of the Daliuta Coal Mine, a non-hydrophilic simulation material suitable for simulating the weakly cemented rock masses in this area was developed, and a physical simulation test was carried out using a water-sand gushing test system. The study explored the spatial distribution and dynamic evolution of the fractured zone in the mining overburden under the coupling of stress and seepage. The experimental results show that the mining overburden can be vertically divided into the overall migration zone, the fracture extension zone and the collapse zone; additionally, in the horizontal direction, the mining overburden can be divided into the primary fracture zone, periodic fracture zone, and stop-fracture zone. The scope of groundwater flow in the overburden gradually expands with the mining of coal seams. When a stable water inrush channel is formed, other areas no longer generate new channels, and the unstable water inrush channels gradually close. Finally, the primary fracture area becomes the main water inrush channel for coal mines. The numerical simulation results indicate that the overlying rock breaking above the middle of the mined-out area allows the formation of the water-conducting channel. The water body will flow into the fracture extension zone with the shortest path, resulting in the occurrence of water bursting accidents in the mining face. The experimental research results provide a theoretical basis for the implementation of water conservation mining or the establishment of groundwater reservoirs in western mining areas, and this theoretical basis has considerable application and promotion value.

Surface Geophysical Survey for Delineation of Weathered Zone of Chojeong Area and Investigation of Fault Fracture Zones (초정지역의 풍화대 조사 및 단층파쇄 지역의 불연속면 조사를 위한 지표물리탐사)

  • Kim, Ji-Soo;Han, Soo-Hyung
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.517-523
    • /
    • 2007
  • Geophysical surveys(seismic refraction, electrical resistivity, and ground penetrating radar) were performed to delineate the weathering zone associated with vadose water in Chojeong area and investigate the fault related fracture zones. On the basis of seismic velocity structures, weathering layer for the southwestern part is interpreted to be deeper than for the northeastern part. The depth to bedrock(i.e., thickness of weathered zone) from seismic refraction data attempted to be correlated with drill-core data and groundwater level. As for the investigation of geological discontinuities such as fault related fracture zone, seismic refraction, electrical resistivity, and ground penetrating data are compositely employed in terms of velocity and resistivity structures for mapping of surface boundary of the discontinuities up to shallow depth. Surface boundaries of fracture zone are well indicated in seismic velocity and electrical resistivity structures. Accurate estimation of weathered zone and fracture zone can be successfully available for mapping of attitude of vadose water layer.

Behavior Analysis Using FEM for Earth Retaining Wall of Soft Rock Fracture Zone (FEM을 이용한 연암 파쇄대 지반의 흙막이 벽체 거동 분석)

  • Jang, Gi-Soo;Park, Min-Chul;Shin, Hyo-Hee;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.30-37
    • /
    • 2013
  • A soft rock fracture zone is an important element for rock slope or earth retaining, however stability studies of earth retaining wall have been lack. Therefore, this study is analyzed for a behavior of earth retaining wall with condition of fracture zone or no fracture zone and then a numerical analysis (Finite Element Method) was performed considering interaction with field monitoring data between ground and structures. As a result, applied horizontal displacement on retaining wall is correspond between result of numerical analysis and field monitoring data and displacement point stress distribution with fracture zone condition analyzed to be stable side but no fracture zone condition is expressed to be unstable side. The results of this study is purpose for applying safety construction as a top priority at field when designing for future.

A Study on Behaviour of Tunnel Considering the Location of Groundwater Leaching and Fault Fracture Zone under Tunnel Construction (지하수 용출과 단층파쇄 위치에 따른 터널 거동 연구)

  • Son, Yongmin;Kim, Nagyoung;Min, Kyungjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.37-43
    • /
    • 2015
  • Ground characteristics is important in tunnel structure utilizing the strength of underground. In the case of the fault fracture zone such as weak soil conditions exists in the tunnel section and groundwater leaching occurs at the same time, it happens to occur to excessive displacement or collapse of tunnel frequently. Fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel under construction. Behavior of fault fracture zone is determined depending on the size and orientation of the surface portion of the tunnel. If the groundwater occurs in the face of tunnel, groundwater causes displacement and collapse. And the collapse characteristics of tunnel is a major factor in determining that the time-dependent behavior. It is difficult to accurately predict groundwater leaching from the fault fracture zone in the numerical analysis method and analyze the interaction behavior of groundwater and fault fracture zone. Therefore numerical analysis method has limitations the analysis of ground water in the ground which the fault fracture zone and groundwater occurs at the same time. It is required to comprehensively predict the behavior of tunnel and case studies of tunnel construction. Thus, the location of fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel. In this study, behavior characteristics of the tunnel according to the location of the fault fracture was analyzed.

Acoustic Emission on Failure Analysis of Rubber-Modified Epoxy Resin

  • Lee Deok-Bo
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.259-263
    • /
    • 2004
  • Rubber-modified epoxy resins have been employed as adhesive and matrix materials for glass and corbon-fiber composites. The behavior of fracture around a crack tip for rubber-modified epoxy resin is investigated through the acoustic emission (AE) analysis of compact tension specimens. Damage zone and rubber particles distributed around a crack tip were observed by a polarized optical microscope and an atomic force microscope (AFM). The damage zone in front of pre-crack tip in rubber-modified specimen $(15wt\%\; rubber)$ began to form at about $13\%$ level of the fracture load and grew in size until $57\%$ load level. After that, the crack propagated in a stick-slip manner. Based on time-frequency analysis of AE signals and microscopic observation of damage zone, it was thought that AE signals with frequency bands of 0.15-0.20 MHz and 0.20­0.30 MHz were generated from cavitation in the damage zone and crack propagation, respectively.

Microstructures in friction-stir welded Al 7075-T651 alloy (Al 7075의 마찰교반 용접부 미세조직에 관한 연구)

  • Jang, Seok-Ki;Lee, Don-Chool;Kim, Seong-Jong;Jeon, Jeong-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.331-338
    • /
    • 2005
  • The grain structure, dislocation density and second phase particles in various regions including the stir zone(SZ), thermo-mechanically affected zone(TMAZ), and heat affected zone(HAZ) of a friction stir weld 6.35mm thick aluminum 7075-T651 alloy were investigated and compared with the base metal. The microstruectures of nugget zone were compared according to tool rotation speeds and tool transition speeds. The hardness profiles of nugget zone were increased, while decreasing rotation speed and increasing welding speed. The optimal microstructure was gained at the low rotation speed 800rpm and th high welding speed 124mm/min. The nugget microstructures of fracture surface, transgranular dimple and quasicleavage type were showed different fracture type with the HAZ, shear fracture type.

  • PDF

Impact Toughness and Fracture Behavior in Non-Heat Treating Steels Containing Bainite (베이나이트 함유 비조질강의 충격인성 및 파괴거동)

  • Cho, Ki-Sub;Kwon, Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.4
    • /
    • pp.161-167
    • /
    • 2019
  • Impact toughness and fracture behavior were studied in five kinds of non-heat treating steels containing bainite; standard(0.25C-1.5Mn-0.5Cr-0.2Mo-0.15V), high V(0.3V), Ni(0.5Mn-2Ni), W(0.4W instead of Mo), and high C-Ni(0.35C-0.5Mn-2Ni) steels. The good hardness and impact toughness balance was exhibited in the $1100^{\circ}C$-rolled condition, while the impact toughness was deteriorated due to coarse grained microstructure in the $1200^{\circ}C$-rolled condition. The impact toughness decreased with increasing the hardness in all steels studied. The fracture behavior was also basically identical, that is, the fracture area was divided into 3 zones; shear and fibrous zone, fracture transition zone with ductile dimples and cleavage cracks, where the cracks initiate and grow to critical size, unstable cleavage fracture propagation zone. The energy absorbed for the critical crack formation through the plastic deformation inside the plastic zone in front of the notch root contributed to a mostly significant portion of the total impact energy.