• Title/Summary/Keyword: fracture zone

Search Result 759, Processing Time 0.026 seconds

Finite Element Analysis and Validation for Mode I Interlaminar Fracture behavior of Woven Fabric Composite For a Train Carbody Using CZM(Cohesive Zone Model) (CZM(Cohesive Zone Model)을 이용한 철도차량용 직물 복합재의 모우드 I 층간파괴의 해석적 연구)

  • Kim, Seung-Chul;Kim, Jung-Seok;Yoon, Hyuk-Jin;Seo, Seung-Il
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.239-246
    • /
    • 2009
  • The Mode I interlaminar fracture toughness of woven fabric carbon/epoxy and glass/epoxy composites for a train carbody was measured and FEM analysis was conducted. The woven fabric epoxy composite manufactured by hand lay-up, has high stiffness and strength, good resistance for impact, fatigue, corrosion and in-plane failure. The DCB(Double Cantilever Beam) specimen made of woven fabric epoxy composite had the size of 180mm $\times$ 25mm $\times$ 5mm and the insert of 65mm. The Mode I interlaminar toughness of specimen was measured according to ASTM 5528-01. The crack propagation behavior of the DCB specimen was simulated using FEA with cohesive elements that model the adhesive layer between woven fabric plies.

  • PDF

The Fracture Behavior Analysis in Concrete Quay Deck Subjected to Collision of Ship (선박충돌에 의한 콘크리트 안벽의 파괴거동분석)

  • Lee, Rae-Chul;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.75-87
    • /
    • 1997
  • To study the behavior a deck when it was collide with the ship approaching to the deck to berth, it was analyzed the effect zone by the ship collision which consists of deck slab and PC piles of the quay. The numerical technique is used to simulate the behavior of the deck when the ship hit the expansion joint of deck between the deck slabs. The failure behavior and zone of the deck are determinated by the comprehensive numerical study. The impact energy by the ship is also evaluated. It is concluded that these numerical analysis gave a reasonable estimation of the remedial area of the deck damaged by ship collision.

  • PDF

On the Effect of Residual Stress on Fracture Behavior at the Welded Zone According to Annealing Temperature (용접부의 열처리에 따른 잔류응력의 파양거동에 미치는 영향)

  • 정석주
    • Journal of the Korean Society of Safety
    • /
    • v.2 no.3
    • /
    • pp.5-11
    • /
    • 1987
  • In this study, a mild steel (SS41) of the carbon steel, a spring steel (SUP-9), and stainless steel (SUS 304) of the special gceel, etc, are adopted as the experimental materrials and are weded by $CO_2$(SS41, SUP-9), TIG (SUS304), respectively. And the residual stress distribution and fracture behavior at the welded zone are examined according to annealing temperatures of four section involving as welded. As a consequence, the best annealing temperatures that the residual stress is removed enough and mechanical properties are very suitable are at 90$0^{\circ}C$ (SS41), 75$0^{\circ}C$ (SUP-9), 110$0^{\circ}C$ (SUS 304), respectively.

  • PDF

Combined hardening and localized failure with softening plasticity in dynamics

  • Do, Xuan Nam;Ibrahimbegovic, Adnan;Brancherie, Delphine
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.115-136
    • /
    • 2015
  • We present for one-dimensional model for elastoplastic bar with combined hardening in FPZ - fracture process zone and softening with embedded strong discontinuities. The simplified version of the model without FPZ is directly compared and validated against analytical solution of Bazant and Belytschko (1985). It is shown that deformation localizes in an area which is governed by the chosen element size and therefore causes mesh sensitivity and that the length of the strain-softening region tends to localize into a point, which also agrees with results obtained by stability analysis for static case. Strain increases in the softening domain with a simultaneous decrease of stress. The problem unloads elastically outside the strain-softening region. The more general case with FPZ leads to more interesting results that also account for induced strain heterogeneities.

2D continuum viscodamage-embedded discontinuity model with second order mid-point scheme

  • Do, Xuan Nam;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.669-690
    • /
    • 2018
  • This paper deals with numerical modeling of dynamic failure phenomena in rate-sensitive brittle and/or ductile materials. To this end, a two-dimensional continuum viscodamage-embedded discontinuity model, which is based on our previous work (see Do et al. 2017), is developed. More specifically, the pre-peak nonlinear and rate-sensitive hardening response of the material behavior, representing the fracture-process zone creation, is described by a rate-dependent continuum damage model. Meanwhile, an embedded displacement discontinuity model is used to formulate the post-peak response, involving the macro-crack creation accompanied by exponential softening. The numerical implementation in the context of the finite element method exploiting the second-order mid-point scheme is discussed in detail. In order to show the performance of the model several numerical examples are included.

Mechanical Behavior in Buttering Weld Zone between Low Alloy Steel and Austenitic Stainless Steel (저합금강과 오스테나이트 스테인리스강의 버터링 이종용접부에서의 기계적 성질의 거동)

  • Yang, In-Su;Tak, Young-Ji;Kim, Seong-Jae;Oh, Hwan-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.189-194
    • /
    • 2003
  • It is important to evaluate strength of dissimilar weld zone to use dissimilar materials safely. This study examines mechanical characteristics of dissimilar weld zone between low alloy steel and austenitic stainless steel that satisfies welding related requirements of ASME Code, experimentally reviews metallurgical and mechanical properties at and adjacent to weld interface. It is confirmed that hardness singularity occurs at the weld interface, and that optimum buttering thickness is more than 5㎜ from view points of tensile & yield strength. From a macroscopic view, brittle fracture characteristics is observed in buttering weld zone by tensile test.

  • PDF

Analysis of a Crack in Ferroelectric Ceramics Subjected to Electric Fields (전기장을 받는 강유전체 세라믹내의 균열 해석)

  • 범현규;김인옥
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.138-144
    • /
    • 2003
  • A crack in a ferroelectric ceramic subjected to an electric field is analyzed. The boundary of the electrical saturation zone is estimated based on the finite-width saturation zone model, which is analogous to a finite-width Dugdale zone model for mode III. It is shown that the shape and size of the switching zone depends strongly on the boundary of the electrical saturation zone and the ratio of the coercive electric field to the yield electric field. The crack tip stress intensity factor under small scale conditions is evaluated by employing the model of electric nonlinear domain switching. It is found that fracture toughness of the ferroelectric material may be increased or decreased depending on the material property of electrical nonlinearity.

Prospective Morphometric Study for Orbital Floor and Medial Wall Thickness in Vivo (안와바닥과 내벽의 두께에 대한 전향적 생체 계측학적 연구)

  • Park, Chang Sik;Kim, Yong Kyu
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.2
    • /
    • pp.67-70
    • /
    • 2009
  • Purpose: Anatomical basis around orbit can be helpful in periorbital surgery, and there are many articles about measurement between periorbital reference points. In 1967, Jones and Evans measured the orbital wall thickness of Asian cadavers and this article has been cited more than 50 times. But there is no research in orbital thickness in Vivo. Author's idea was based on difference between live human and human cadaver. Material & Method: We conducted this study from 63 consecutive blow out fracture patients between January, 2000 to june, 2005 by collecting the bone fragments and measured the thickness of that fragment using vernia calipers. Anatomically, orbital floor is separated two area by inferior orbital fissure and we measured each area. Three areas were zone I (medial wall), zone II (medial to inferior orbital fissure) and zone III (lateral to inferior orbital fissure). Result: When the overall results were considered, the thickness of Zone I (medial wall of orbit) was average $0.131{\pm}0.006mm$ in male and $0.129{\pm}0.007mm$ in female and Zone II (medial side of orbital floor) was $0.251{\pm}0.005mm$ in male and $0.245{\pm}0.006mm$ in female, Zone III (lateral side of orbital floor) was $0.237{\pm}0.006mm$ in male and $0.226{\pm}0.006mm$ in female. There were no statistical difference between orbital wall thickness of male and female. Also, orbital wall thickness of adults measured $0.130{\pm}0.005mm$, $0.250{\pm}0.005mm$, $0.232{\pm}0.006mm$ in Zone I, Zone II, Zone III and $0.128{\pm}0.006mm$, $0.233{\pm}0.005mm$, $0.215{\pm}0.007mm$ in Zone I, Zone II, Zone III from childs, and there were no statistical difference between adult and child. Conclusion: This article is the first study about Korean orbital wall thickness, and can be helpful to periocular surgery.

Review on the Effects of Material Heterogeneity on Fracture Toughness in Steel Weldment (재질적 불균질이 강용접부의 파괴인성에 미치는 영향에 관한 고찰)

  • Jang J.-i.;Yang Y.-c.;Kim W.-s.;Lee B.-W.;Kwon D.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.1-10
    • /
    • 1999
  • The evaluation of fracture toughness in weldment is necessary for the safety performance of industrial structures with large scale such as various power plants, LNG (liquefied natural gas) storage tanks, etc. It is generally known that weldments have material heterogeneity, which results in the serious changes in fracture characteristics of HAZ (heat-affected zone). Nevertheless, the systematic study on material heterogeneity of weldment has not been performed yet in Korea. Therefore in this paper, the effects of material heterogeneity on the fracture toughness of structural steel HAZ were introduced and reviewed.

  • PDF

Rock bridge fracture model and stability analysis of surrounding rock in underground cavern group

  • Yu, Song;Zhu, Wei-Shen;Yang, Wei-Min;Zhang, Dun-Fu;Ma, Qing-Song
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.481-495
    • /
    • 2015
  • Many hydropower stations in southwest China are located in regions of brittle rock mass with high geo-stresses. Under these conditions deep fractured zones often occur in the sidewalls of the underground caverns of a power station. The theory and methods of fracture and damage mechanics are therefore adopted to study the phenomena. First a flexibility matrix is developed to describe initial geometric imperfections of a jointed rock mass. This model takes into account the area and orientation of the fractured surfaces of multiple joint sets, as well as spacing and density of joints. Using the assumption of the equivalent strain principle, a damage constitutive model is established based on the brittle fracture criterion. In addition the theory of fracture mechanics is applied to analyze the occurrence of secondary cracks during a cavern excavation. The failure criterion, for rock bridge coalescence and the damage evolution equation, has been derived and a new sub-program integrated into the FLAC-3D software. The model has then been applied to the stability analysis of an underground cavern group of a hydropower station in Sichuan province, China. The results of this method are compared with those obtained by using a conventional elasto-plastic model and splitting depth calculated by the splitting failure criterion proposed in a previous study. The results are also compared with the depth of the relaxation and fracture zone in the surrounding rock measured by field monitoring. The distribution of the splitting zone obtained both by the proposed model and by the field monitoring measurements are consistent to the validity of the theory developed herein.