• Title/Summary/Keyword: fracture zone

Search Result 758, Processing Time 0.028 seconds

Prediction of fracture toughness for turbine rotor steels from their mechanical test results (터어빈 로우터용 강에 대한 기계적 성질로부터 파괴인성치$K_IC$예측에 관한 연구)

  • 이학문;정순호;장윤석;이치우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.717-724
    • /
    • 1987
  • Mechanical properties tests and fracture toughness tests of turbine rotors were performed in the wide range of temperatures, -150.deg.C-+150.deg.C, and fracture toughness values from above tests were compared with the estimated values from mechanical properties at lower and upper shelf temperatures and FATT. The relations between mechanical properties and $K_{IC}$ properties proposed by Rolfe and Begley were reviewed and confirmed through these experimental results. On the fracture surfaces of some specimens which were satisfied with the Ikeda's $K_{IC}$ criterion micro dimple zone was detected at the rear of fatigue crack zone and it was confirmed that these specimens were not satisfied with the thickness requirement of ASTM E 399.E 399.

A Study on the Fracture Surface Growth Behavior of Steel used for Frame of Vehicles by Corrosion Fatigue (자동차 프레임용 강재의 부식피로에 의한 파면성장거동에 관한 연구)

  • Lee, Sang-Yoel;Im, Jong-Mun;Im, U-Jo;Lee, Jong-Rak
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.61-70
    • /
    • 1992
  • In this study, corrosion fatigue test of SAPH45 steel was performed by the use of plane bending fatigue tester in marine environment and investigated fracture surface growth behavior of base metal and heat affected zone corrosion fatigue. The main results obtained are as follows: 1) Fracture surface growth of heat affected zone (HAZ) is delayed more than that of base matel (BM), and they tend to faster in seawater than in air. 2) Corrosion sensitivity to corrosion fatigue life of HAZ is more susceptible than that of BM. 3)In the case of the corner crack by corrosion fatigue, the correlation between the propagation rate of fracture surface area(dA/dN) and stress intensity factor range(ΔK) for SAPH45 are applied to Paris rule as follows: dA/dN=C(ΔK) super(m) where m is the slope of the correlation, and is about 6.60-6.95 in air and about 6.33-6.41 in seawater respectively.

  • PDF

A Study on Behavior of Fracture and Stress Distribution in Spot Welds (점熔接材 의 破壞擧動 과 應力分布)

  • 송삼홍;김부동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.224-231
    • /
    • 1984
  • Having found by means of a tension-shear test an optimal spot welding condition under which the maximum weld strength is to be brought forth, this study made an examination of behavior of fracture concerned with behavior of stress distribution, observed around the nugget periphery of the specimens prepared under the optimal conditions, with one point spot welded mild steel sheets. The resultant findings are as follows: (1)There remarkably exists an optimal spot welding condition to indicate the maximum weld strength, and fracture of the specimens spot welded under that condition occurs outside the nugget boundary. (2)An experiment on the basis of a photoelastic model reveals that the maximum stress is distributed along the center line of the steel plate width but occurs on the region corresponding to heat affected zone of spot welds. (3)Heat affected zone of spot welds consists of coarse grains with considerably low micro Vickers hardness value and of fine grains of high micro Vickers hardness value, and in this unbalanced structure weak region are represented in coarse grain region, where fracture is initiated and continues its propagation.

A case histories on the detection of weak zone using electrical resistivity and EM surveys in planned tunnel construction site (터널 건설 예정지구에서의 전기비저항 탐사와 전자탐사의 적용을 통한 연약대 탐지에 대한 사례 연구)

  • 권형석;송윤호;이명종;정호준;오세영;김기석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.63-70
    • /
    • 2002
  • In tunnel construction, the information on the rock quality and the location of fault or fracture are crucial for economical design of support pattern and for safe construction of the tunnel. The grade of rock is commonly estimated through the observation with the naked eye of recovered cores in drilling or from physical parameters obtained by their laboratory test. Since drilling cost is quite expensive and terrains of planned sites for tunnel construction are rough in many cases, however, only limited information could be provided by core drilling Electrical resistivity and EM surveys may be a clue to get over this difficulty. Thus we have investigated electrical resistivity and EM field data providing regional Information of the rock Quality and delineating fault and fracture over a rough terrain. In this paper, we present some case histories using electrical resistivity and EM survey for the site investigation of tunnel construction. Through electrical resistivity and EM survey, the range and depth of coal seam was clearly estimated, cavities were detected in limestone area, and weak zones such as joint, fault and fracture have been delineated.

  • PDF

Numerical Study on the Effectiveness of Guide Holes on the Fracture Plane Control in Smooth Blasting (SB발파에서 무장약 균열 유도공의 파단면 제어 유효성에 관한 수치해석적 연구)

  • Kim, Hyon-Soo;Kim, Seung-Kon;Song, Young-Su;Kim, Kwang-Yeom;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.235-243
    • /
    • 2011
  • In this study, a control blast method, which utilizes crack guide holes, is suggested to achieve smooth fracture plane and minimize blast damage zone (BDZ) in smooth blasting. In order to verify the effectiveness of crack guide holes on the fracture plane control in blasting, fracture process analyses which consider regular smooth blasting and guide hole smooth blasting had been conducted and the fracture planes resulting from the analyses had been compared. The analyses models considered the ignition of the blast holes using detonation cords and each guide hole placed between blast holes. From the results, the smooth blasting utilizing guide holes showed lower fracture plane roughness than regular smooth blasting method in the hole spacing range between 20 to 40cm.

Study on the Evaluation of Fracture Toughness at Welded Zone for the Pipe Steel by $CO_2$ Gas Welding ($CO_2$가스 배관용접부의 파괴인성평가에 관한 연구)

  • Na, Ui-Gyun;Yu, Hyo-Seon;O, Seok-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1817-1825
    • /
    • 2000
  • The purpose of this study is to examine the fracture toughness of the welded pipe from the viewpoint of FATT for the S38 and S42 steels used widely as the pipe material. Post weld heat treatment(PW HT) was carried out like following conditions: temperature of 67$0^{\circ}C$, I hour of holding time and cooling in furnace. Fracture toughness was obtained by measuring the crack opening displacement(COD) of the notched specimens over the range of temperature from -14$0^{\circ}C$ to -$25^{\circ}C$. Hardness values at fusion line near around were the highest and the microstructures at welded zone were coarsened. Regardless of the pipe materials, COD and temperature curves of the as-welds were moved toward higher temperature compared with those of the parents. However, COD and temperature curves of the PWHT specimens were positioned at lower temperature compared with those of the as-welds. The more heat input causes to decrease the COD values at the constant temperature. It was verified through the recrystallization treatment that PWHT was attributed to move toward lower temperature region considerably due to the improved plastic deformation at the same applied COD value of 0.3mm and softening effect. In case of the weldment of S38 steel, cleavage fracture was observed at -105$^{\circ}C$ unlike the structural steels, in which brittle fracture mode was generally shown at - 196$^{\circ}C$.

Surgical Treatment of the Fifth Metatarsal Base Fracture Using Multiple Kirschner Wires (다발성 Kirschner 강선을 이용한 제 5중족골 기저부 골절의 수술적 치료)

  • Kim, Jihyeung;Kim, Jang Woo;Lee, Jeong Ik;Kim, Sang Kil;Rhee, Seung Hwan
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.1
    • /
    • pp.24-28
    • /
    • 2014
  • Purpose: The purpose of this study is to evaluate the clinical and radiographic results of internal fixation using multiple Kirschner wires (K-wires) for the fifth metatarsal base fracture. Materials and Methods: We retrospectively reviewed 14 patients with a displaced fifth metatarsal base fracture. We measured the distance of fracture displacement on the foot oblique radiograph pre- and post-operatively. We evaluated the clinical results using the visual analog pain scale at six weeks and three months postoperatively and the American Orthopaedic Foot and Ankle Society (AOFAS) mid-foot score at six months postoperatively. Results: In our series, 10 cases were zone I fracture and four cases were zone II fracture. We achieved anatomical reduction and bony union in all of our cases. The average time to bone union was 43 days. The degree of pain around the fifth metatarsal base was significantly decreased after surgery. The average AOFAS score was 95 at six months postoperatively. Conclusion: Multiple K-wire fixation is a relatively simple fixation method for displaced fifth metatarsal base fractures. If we place a K-wire into the medial cortex of the fifth metatarsal, we could prevent proximal migration of the K-wire.

The study on dynamic fracture toughness of friction-welded M.E.F. dual phase steel (복합조직강의 마찰용접부에 대한 동적파괴특성)

  • 오세욱;유재환;이경봉
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.19-27
    • /
    • 1989
  • Both the SS41 steel and the M.E.F(martensite encapsulated islands of frrite) dual phase steel made of SS41 steel by heat treatment were welded by friction welding, and then manufactured machinemade Vnotch standard Charpy impact specimens and precracked with a fatigue system at BM(base metal), HAZ(heat affected zone) and WZ(weld interface Zone). The impact test of them was performed with an instrumented impact test machine at a number of temperatures in constant loading velocity and the dynamic fracture characteristics were studied on bases of the absorbed energy, dynamic fracture toughness and fractography from the test. The results obtained are as follows; At the room temperature, the absorbed energy is HAZ.geq.WZ.geq.BM in case of the M.E.F. dual phase steel: BM.geq.HAZ.geq.WZ in case of the SS41 steel, HAZ.geq.BM.geq.WZ at the low temperature. The absorbed energy is decreased markedly with the temperature lowering; it is highly dependent on the temperature. The dynamic fracture toughness of the M.E.F. dual phase steel is HAZ.geq.WZ.geq.BM at the room temperature; BM.geq.WZ.geq.HAZ below-60.deg. C. Therefore the reliability of friction welding is uncertain at the low temperature(below-60.deg. C). The dynamic fracture toughness of the SS41 steel; HZA.geq.WZ.geq.BM at overall temperature region. The flaw formed by rotational upsetting pressure was shown y SEM; in this region. The absorbed energy per unit area and dynamic fracture toughness were low relative to other region.

  • PDF

Study on PWHT embrittlement of weld HAZ in Cr-Mo steel (Cr-Mo 鋼 溶接熱影響部의 溶接後熱處理 脆化에 관한 硏究)

  • 임재규;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.314-321
    • /
    • 1987
  • Post weld heat treatment (PWHT) of weldment of the low alloy Cr-Mo steel, in general, is carried out not only to remove residual stress and hydrogen existing in weldment but to improve fracture toughness of weld heat affected zone (HAZ). There occur some problems such as toughness decrement and stress relief cracking (SRC) in the coarse grained region of weld HAZ when PWHT is practiced. Especially, embrittlement of structure directly relates to the mode of fracture and is appeared as the difference of fracture surface such as grain boundary failure. Therefore, in this paper, the effect of heating rate on PWHT embrittlement under the various kinds of stresses simulated residual stress in weld HAZ was evaluated by COD fracture toughness test and observation of fracture surface. Fracture toughness of weld HAZ decreased with increment of heating rate under no stress, but it was improved to increment of heating rate under the stress. Grain boundary failure didn't almost appear at the heating rate of 600.deg.C/hr but it appeared from being the applied stress of 294 MPa at 220.deg.C/hr and 196 MPa at 60.deg.C/hr.

Relative Panel Zone Strength in Seismic Steel Moment Connections for Prevention of Panel Zone Shear Buckling (내진철골모멘트접합부 패널존의 전단좌굴 방지를 위한 패널존 상대강도)

  • Kim, So-Yeon;Lee, Cheol-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.845-850
    • /
    • 2007
  • The empirical AISC panel zone thickness provision$(t_z\geq(d_z+w_z)$/90) to prevent the cyclic shear buckling of the panel zone was proposed based on the test data of Krawinkler et al. (1971) and Bertero et al. (1973) However, no published records of the equation development or any other background information appear to be available. The calibrated finite element analysis results of this study indicated that the AISC provision was not reasonable. In this study, through including the effects of the column axial force and the aspect ratio of the panel zone, a new equation for the relative strength between the beam and the panel zone was proposed such that the proposed equation can prevent the panel zone shear buckling and reduce the potential fracture associated with the kinking of the column flanges.

  • PDF