• Title/Summary/Keyword: fracture surfaces

Search Result 433, Processing Time 0.024 seconds

Influence of Solid Loading on the Granulation of 3Y-TZP Powder by Two-Fluid Spray Drying

  • Jeong, Hyeongdo;Lee, Jong Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.337-343
    • /
    • 2018
  • The influence of solid loading in the slurry composition on the morphology of 3Y-TZP granules fabricated by two-fluid spray drying was investigated for solid contents varying between 30 wt% and 50 wt%. The resulting 3Y-TZP granules showed a sphere-like shape with diameters of $40-70{\mu}m$. However, a donut-like shape and a few cracks were observed on the granule surfaces fabricated using the slurry with 50 wt% solid content. The green density after cold isostatic pressing at 200 MPa was $2.1-2.2g/cm^3$, and a homogeneous fracture surface was obtained by complete destruction of granules. After sintering at $1500^{\circ}C$ for 2 h, all specimens had relative densities of 96.2 - 98.3%. With increasing solid content, the relative density decreased from 98.3% to 96.2%, but the grain size increased from $0.3{\mu}m$ to $0.6{\mu}m$. Highly sinterable zirconia granule powder could be obtained by controlling the slurry composition.

Mechanical Properties of Cf/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis

  • Kim, Kyung-Mi;Hahn, Yoonsoo;Lee, Sung-Min;Choi, Kyoon;Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.392-399
    • /
    • 2018
  • $C_f/SiC$ composites were prepared via a process combining chemical vapor infiltration (CVI) and precursor infiltration pyrolysis (PIP), wherein silicon carbide matrices were infiltrated into 2.5D carbon preforms. The obtained composites exhibited porosities of 20 vol % and achieved strengths of 244 MPa in air at room temperature and 423 MPa at $1300^{\circ}C$ under an Ar atmosphere. Carbon fiber pull-out was rarely observed in the fractured surfaces, although intermediate layers of pyrolytic carbon of 150 nm thickness were deposited between the fiber and matrix. Fatigue fracture was observed after 1380 cycles under 45 MPa stress at $1000^{\circ}C$. The fractured samples were analyzed by transmission electron microscopy to observe the distributed phases.

Fabrication and Electrical, Thermal and Morphological Properties of Novel Carbon Nanofiber Web/Unsaturated Polyester Composites

  • Kim, Seong-Hwan;Kwon, Oh-Hyeong;Cho, Dong-Hwan
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.285-292
    • /
    • 2010
  • Novel unsaturated polyester composites with PAN-based nanofiber, stabilized PAN nanofiber, and carbonized nanofiber webs have been fabricated, respectively, and the effects of the nanofiber web content on their electrical resistivity, the thermal stability, dynamic storage modulus, and fracture surfaces were studied. The result demonstrated that the introduction of just one single layer (which is corresponding to 2 wt.%) of the carbonized nanofiber web to unsaturated polyester resin (UPE) could contribute to reducing markedly the electrical resistivity of the resin reflecting the percolation threshold, to improving the storage modulus, and to increasing the thermal stability above $350^{\circ}C$. The effect on decreasing the resistivity and increasing the modulus was the greatest at the carbonized PAN nanofiber web content of 8 wt.%, particularly showing that the storage modulus was increased about 257~283% in the measuring temperature range of $-25^{\circ}C$ to $50^{\circ}C$. The result also exhibited that the carbonized PAN nanofibers were distributed uniformly and compactly in the unsaturated polyester, connecting the matrix three-dimensionally through the thickness direction of each specimen. It seemed that such the fiber distribution played a role in reducing the electrical resistivity as well as in improving the dynamic storage modulus.

OUT-OF-PILE MECHANICAL PERFORMANCE AND MICROSTRUCTURE OF RECRYSTALLIZED ZR-1.5 NB-O-S ALLOYS

  • Ko, S.;Lee, J.M.;Hong, S.I.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.421-428
    • /
    • 2011
  • The out-of-pile mechanical performance and microstructure of recrystallized Zr-1.5 Nb-S alloy was investigated. The strength of the recrystallized Zr-1.5Nb-O-S alloys was observed to increase with the addition of sulfur over a wide temperature range, from room temperature up to $300^{\circ}C$. A yield drop and stress serrations due to dynamic strain were observed at room temperature and $300^{\circ}C$. Wavy and curved dislocations and loosely knit tangles were observed after strained to 0.07 at room temperature, suggesting that cross slip is easier. At $300^{\circ}C$, however, dislocations were observed to be straight and aligned along the slip plane, suggesting that cross slip is rather difficult. At $300^{\circ}C$, oxygen atoms are likely to exert a drag force on moving dislocations, intensifying the dynamic strain aging effect. Oxygen atoms segregated at partial dislocations of a screw dislocation with the edge component may hinder the cross slip, resulting in the rather straight dislocations distributed on the major slip planes. Recrystallized Zr-Nb-S alloys exhibited ductile fracture surfaces, supporting the beneficial effect of sulfur in zirconium alloys. Oxidation resistance in air was also found to be improved with the addition of sulfur in Zr-1.5 Nb-O alloys.

SUSCEPTIBILITY OF ALLOY 690 TO STRESS CORROSION CRACKING IN CAUSTIC AQUEOUS SOLUTIONS

  • Kim, Dong-Jin;Kim, Hong Pyo;Hwang, Seong Sik
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Stress corrosion cracking (SCC) behaviors of Alloy 690 were studied in lead-containing aqueous alkaline solutions using the slow strain rate tension (SSRT) tests in 0.1M and 2.5M NaOH with and without PbO at $315^{\circ}C$. The side and fracture surfaces of the alloy were then examined using scanning electron microscopy after the SSRT test. Microstructure and composition of the surface oxide layer were analyzed by using a field emission transmission electron microscopy, equipped with an energy dispersive X-ray spectroscopy. Even though Alloy 690 was almost immune to SCC in 0.1M NaOH solution, irrespective of PbO addition, the SCC resistance of Alloy 690 decreased in a 2.5M NaOH solution and further decreased by the addition of PbO. Based on thermodynamic stability and solubility of oxide, high Cr of 30wt% in the Alloy 690 is favorable to SCC in mild alkaline and acidic solutions whereas the SCC resistance of high Cr Alloy 690 is weakened drastically in the strong alkaline solution where the oxide is not stable any longer and solubility is too high to form a passive oxide locally.

Investigation on Mechanical Property and Adhesion of Oxide Films Formed on Ni and Ni-Co Alloy in Room and High Temperature Environments

  • Oka, Yoshinori I.;Watanabe, Hisanobu
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.145-151
    • /
    • 2008
  • Material degradation such as high temperature oxidation of metallic material is a severe problem in energy generation systems or manufacturing industries. The metallic materials are oxidized to form oxide films in high temperature environments. The oxide films act as diffusion barriers of oxygen and metal ions and thereafter decrease oxidation rates of metals. The metal oxidation is, however, accelerated by mechanical fracture and spalling of the oxide films caused by thermal stresses by repetition of temperature change, vibration and by the impact of solid particles. It is therefore very important to investigate mechanical properties and adhesion of oxide films in high temperature environments, as well as the properties in a room temperature environment. The oxidation tests were conducted for Ni and Ni-Co alloy under high temperature corrosive environments. The hardness distributions against the indentation depth from the top surface were examined at room temperature. Dynamic indentation tests were performed on Ni oxide films formed on Ni surfaces at room and high temperature to observe fractures or cracks generated around impact craters. As a result, it was found that the mechanical property as hardness of the oxide films were different between Ni and Ni-Co alloy, and between room and high temperatures, and that the adhesion of Ni oxide films was relatively stronger than that of Co oxide films.

On the Mechanical Properties at Low Temperatures for Steels of Ice-Class Vessels (빙해선박용 강재의 저온특성에 관한 연구)

  • Min, Dug-Ki;Shim, Chun-Sik;Shin, Dong-Wan;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.171-177
    • /
    • 2011
  • Tensile tests were conducted at low temperatures for the steel materials which are used for outer shell of the vessels making transit through the polar regions. The selected steel materials were GL-DH32, GL-DH36 and GL-EH36. In comparison with the results at room temperature, the yield stress increases approximately by 10 to 13 percent at $-30^{\circ}C$ and by 13 to 19 percent at $-50^{\circ}C$ while the tensile strength increases about by 9 percent at $-30^{\circ}C$ and 11 to 14 percent at $-50^{\circ}C$. To obtain true stress-true strain, i.e. correct plastic hardening characteristics, Bridgman's(1952) necking correction formula was introduced taking triaxial state of stresses after onset of diffuse necking into consideration. Photographs of fractured surfaces were taken by using Scanning Electron Microscope immedately after tensile tests completed and one for GL-EH36 has been presented in this paper.

Influence of Allylamine Plasma Treatment Time on the Mechanical Properties of VGCF/Epoxy

  • Khuyen, Nguyen Quang;Kim, Jin-Bong;Kim, Byung-Sun;Lee, Soo
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.221-232
    • /
    • 2009
  • The allylamine plasma treatment is used to modify the surface properties of vapor grown carbon fibers (VGCF). It is to improve the interfacial bonding between the VGCF and epoxy matrix. The allylamine plasma process was performed by batch process in a vacuum chamber, using gas injection followed by plasma discharge for the durations of 20, 40 and 60 min. The interdependence of mechanical properties on the VGCF contents, treatment time and interfacial bonding between VGCF/ep was investigated. The interfacial bonding between VGCF and epoxy matrix was observed by scanning electron microscopy (SEM) micrographs of nanocomposites fracture surfaces. The changes in the mechanical properties of VGCF/ep, such as the tensile modulus and strength were discussed. The mechanical properties of allylamine plasma treated (AAPT) VGCF/ep were compared with those of raw VGCF/ep. The tensile strength and modulus of allyamine plasma treated VGCF40 (40 min treatment)/ep demonstrated a higher value than those of other samples. The mechanical properties were increased with the allyamine plasma treatment due to the improved adhesion at VGCF/ep interface. The modification of the carbon nanofibers surface was observed by transmission electron microscopy (TEM). SEM micrographs showed an excellent dispersion of VGCF in epoxy matrix by ultrasonic method.

Effect of Surface Condition on the Bonding Characteristics of 3Y-$ZrO_2$-Metal Bracket System (3Y-$ZrO_2$ 세라믹과 교정용 브라켓계에서 세라믹의 표면 조건에 따른 접착 거동의 변화)

  • O, Seon-Mi;Kim, Jin-Seong;Lee, Chae-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.47-54
    • /
    • 2011
  • Purpose: To investigate shear bonding strength between dental zirconia ceramics with different surface treatment and metal bracket. Methods: Zirconia ceramics(LAVA, 3M ESPE, USA) were divided to 4 groups according to their surface treatment; no surface treatment(G1), sand blasting(G2), silane coating(G3), and sand blasting+silane coating(G4). Specimens were bonded to metal bracket using resin bond($Transbond^{TM}XT$, 3M Unitek, USA). Shear bond strength was measured using universal test machine(3366 INSTRON. U.S.A) with cross head speed of 1 mm/min. Microstructural investigation for fracture surface was performed after shear test. Results: Shear bonding strengths of single surface treatment groups (G2 and G3) were higher than no treatment group(G1). Combined Treatment Group (G4) showed the highest shear bond strength of 9.15MPa. Microstructural observation shows that higher shear bonding strength was obtained when debonding was occurred at metal bracket/resin interface rather than zirconia ceramic/resin interface. Conclusion: Surface treatment of zirconia is necessary to obtain higher bonding strength. Combined treatment can be more effective when surface the surfaces are kept clean and homogeneous.

Mechanical Properties and End-milling Characteristic of AIN-hBN Based Machinable Ceramics (AIN-hBN계 머시너블 세라믹스의 기계적 특성 및 엔드밀링 가공성 평가)

  • Beck, Si-Young;Cho, Myeong-Woo;Cho, Won-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • In this study, machining characteristics of AIN-hBN composites were evaluated in end-milling process. As a first step, AIN-hBN composite specimens with various hBN contents were prepared using hot press method. Material properties of the composites, such as relative density, Young's modulus and fracture toughness, were measured and compared. Then, a series of end-milling experinients were performed under various cutting conditions by changing cutting speed, depth-of-cut and feed rate. Cutting force variations were measured using a tool dynamometer during the cutting experiments. Machined surfaces of the specimens were observed using SEM and a surface pro filer to investigate the surface integrity changes. The cutting force decreased with an increases of hBN content. The cutting process was almost impossible for monolithic AIN, owing to severe chipping. In contrast, at high content of hBN, surface damage and chipping decreased, and better surface roughness can be obtained.