• 제목/요약/키워드: fracture surfaces

검색결과 432건 처리시간 0.028초

광중합 Glass Ionomer Cement와 Amalgam의 결합강도에 관한 연구 (A STUDY ON THE BOND STRENGTHS OF LIGHT-CURING GLASS IONOMER CEMENTS TO DENTAL AMALGAM)

  • 정태성
    • 대한소아치과학회지
    • /
    • 제23권2호
    • /
    • pp.357-364
    • /
    • 1996
  • 소아치과 임상에서 자주 사용되는 3 종의 광중합형 GIC의 아말감에 대한 접착능을 평가 할 목적으로 60 개의 아말감 부착시편을 이용하여 중간결합제인 Scotchbond 의 사용여부에 따른 경화된 아말감에 대한 광중합 GIC의 전단결합강도를 측정하고 경계부의 파절양상을 관찰한 결과, 다음과 같은 결론을 얻었다. 1. 아말감에 대한 광중합형 GIC의 전단강도는 Fuji II LC, Vitremer, Vitrebond의 순으로 높게 나타났다 (p<0.05). 2. 중간결합제인 Scotchbond를 사용하지 않은 경우에서 Scotchbond 를 사용한 경우에 비해 전단결합강도가 높게 나타났다(p<0.05). 3. 결합파절면은 Scotchbond를 사용한 경우의 대부분에서 Scotchbond와 아말감의 경계부에서 시편의 탈락이 나타났다. 아말감과 광중합 GIC의 결합을 시도할 경우에는 Scotchbond는 사용하지 않는 것이 바람직할 것으로 사료되었다.

  • PDF

불소함유여부에 따른 치면열구전색제의 전단결합강도에 관한 실험적 연구 (An Experimental Study on the Shear Bond Strength of Fluoride-Containing Sealant and Non-Fluoride Containing Sealant)

  • 허선;권선자;김재곤;백병주
    • 대한소아치과학회지
    • /
    • 제23권2호
    • /
    • pp.489-501
    • /
    • 1996
  • This study was to evaluate shear bond strength of fluoride-releasing sealant and nonfluoride releasing sealant to enamel surface of bovine tooth. 80 extracted bovine teeth were randomly assigned to four groups, and four kinds of sealants including Teethmate-A(Kuraray Co.), Teethmate-F(Kuraray Co.), Helioseal(Vivadent Co.), Helioseal-F(Vivadent Co.) were bonded to exposed enamel surfaces using silicon plate. Shear bond strength was determined in an instron universal testing machine at a crosshead speed of 1mm/min. Then, the fracture surfaces of test specimens were investigated with scanning electron microscope. The obtained results were as follows; 1. The shear bond strength decreased in the following order : Teethmate-A(18.31MPa), Teethmate-F(11.90MPa), Helioseal (11.74 MPa), Helioseal-F(10.64MPa). 2. The shear bond strength of Teethmate-A showed significantly higher than that of Teethmate-F(P<0.05), but Helioseal and Helioseal-F didn't showed statistically different(P<0.05). 3. According to the SEM, Teethmate-A group showed cohesive failure, and Teethmate-A group & Helioseal group showed mixed pattern of cohesive and adhesive failure and Helioseal-F group showed adhesive failure.

  • PDF

Kenaf 섬유의 알칼리처리가 Kenaf/PLA 바이오복합재료의 특성에 미치는 영향 (Alkali Treatment Effect of Kenaf Fibers on the Characteristics of Kenaf/PLA Biocomposites)

  • 서정민;조동환;박원호
    • 접착 및 계면
    • /
    • 제9권4호
    • /
    • pp.1-11
    • /
    • 2008
  • 본 연구에서는 바이오복합재료 성형 전에 침지방법과 초음파방법을 이용하여 수산화나트륨 용액으로 kenaf 섬유를 처리하였다. Kenaf/poly(lactic acid)의 kenaf-PLA 계면접착력과 기계적, 열적 특성에 미치는 알칼리처리의 영향을 계면전단강도, 굴곡강도, 동역학적 열특성 및 열안정성을 조사하였으며, kenaf 섬유와 복합재료 파단면을 관찰하였다. 그 결과 Kenaf 섬유표면을 처리하기 위한 침지방법과 초음파방법 모두 바이오복합재료의 섬유-매트릭스 접착과 기계적 특성을 증가시키는 역할을 하는 것으로 조사되었다. 바이오복합재료의 특성은 섬유표면 처리방법뿐만 아니라 알칼리 농도 및 처리시간에도 의존하였다.

  • PDF

황마 단섬유 강화 폴리프로필렌 복합재료의 기계적 거동에 미치는 결합제 및 섬유 Loading의 영향 (Effect of Coupling Agent and Fiber Loading on Mechanical Behavior of Chopped Jute Fiber Reinforced Polypropylene Composites)

  • 세이크 라셀;남기법;변정명;김병선;송정일
    • Elastomers and Composites
    • /
    • 제46권3호
    • /
    • pp.204-210
    • /
    • 2011
  • 본 연구에서는 황마/폴리프로필렌 강화 섬유 복합재료를 사출성형 방법으로 제조하였으며, 섬유와 열가소성 기지재의 친화력과 접착력을 향상시키기 위해 말레산 무수물(Maleic anhydride, MA)을 결합제로 사용하였다. 천연 섬유인 황마의 표면처리 관찰을 위해서 주사전자현미경(SEM)과 적외선분광기(FTIR)를 사용하였고, 인장 및 굽힘 특성을 확인하기 위하여 기계적 특성 시험을 수행하였으며, 수분흡수율도 측정하여 비교하였다. 인장 및 굽힘 시험 결과 황마 복합재료(JFRP)는 기지재로 사용된 폴리프로필렌(PP)보다 높은 강도와 탄성계수를 나타내었고, 황마 복합재료의 강도 및 탄성계수는 결합제의 비율을 1~3%까지 증가시킴에 따라 높은 결과를 보였다. 이는 결합제의 비율을 증가시킬수록 섬유와 기지재 사이의 계면접착력을 향상시킬 수 있음을 의미한다.

복합레진과 Glass Ionomer Cement수복물에 대한 Bracket의 접착전단강도 (THE SHEAR BOND STRENGTH OF TWO ADHESIVES BONDED TO COMPOSITE RESIN AND GLASS IONOMER CEMENT RESTORATIONS)

  • 한재익;이병태
    • 대한치과교정학회지
    • /
    • 제20권3호
    • /
    • pp.583-591
    • /
    • 1990
  • If the bond strength is sufficient to resist orthodontic force, orthodontic brackets can be bonded to restorations. Orthodontic brackets were bonded to composite resin and glass ionomer cement restorations with no-mix adhesive or glass ionomer cement. The shear bond strength of adhesives bonded to restorations was studied in vitro. Orthodontic brackets were bonded to 10 extracted natural teeth, 40 composite resin restorations and 40 glass ionomer restorations. The surfaces of composite resin restorations were roughened or applied with bonding agent (Scothbond) after surface roughening. The surfaces of glass ionomer cement restorations were conditioned with acid etching or applied with Scotchbond to etched surface. The adhesive was no-mix resin or glass ionomer cement. The shear bond strength was measured. The results were as follows: 1. Orthodontic brackets could be bonded to composite resin restorations effectively as they could be bonded to acid etched enamel with no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was not affected by bonding agent greatly. 2. The shear bond strength of no-mix adhesive bonded to acid etched glass ionomer cement restorations was sufficient to resist orthodontic force. However. the fracture risk of glass ionomer cement restorations was increased during debonding. The bonding agent couldn't increase the shear bond strength greatly. 3. The shear bond strength of glass ionomer cement bonded to glass ionomer cement restorations was lower than that of no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was greatly decreased by bonding agent. 4. The shear bond strength of glass ionomer cement bonded to composite resin restorations was too low to resist orthodontic force.

  • PDF

Effect of biofilm formation, and biocorrosion on denture base fractures

  • Sahin, Cem;Ergin, Alper;Ayyildiz, Simel;Cosgun, Erdal;Uzun, Gulay
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권2호
    • /
    • pp.140-146
    • /
    • 2013
  • PURPOSE. The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. MATERIALS AND METHODS. Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (${\alpha}$=0.05). RESULTS. Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P<.05); microorganisms diffused at least 52% of the denture base surface. The highest median quantitative biofilm value within all the denture base materials was obtained with P. aeruginosa on Lucitone 550. The type of denture base material did not alter the diffusion potential of the microorganisms significantly (P>.05). CONCLUSION. All the tested microorganisms had destructive effect over the structure and composition of the denture base materials.

Effect of an aluminum chloride hemostatic agent on the dentin shear bond strength of a universal adhesive

  • Sujin Kim;Yoorina Choi;Sujung Park
    • Restorative Dentistry and Endodontics
    • /
    • 제48권2호
    • /
    • pp.14.1-14.11
    • /
    • 2023
  • Objectives: This study investigated the effect of an aluminum chloride hemostatic agent on the shear bond strength (SBS) of a universal adhesive to dentin. Materials and Methods: Eighty extracted human molars were trimmed at the occlusal dentin surfaces and divided mesiodistally. According to hemostatic agent application, specimens were randomly allocated into control (C) and hemostatic agent (Traxodent; H) groups. Each group was divided into 4 subgroups according to the adhesive system (n = 20): Scotchbond Multi-Purpose (SBER), Clearfil SE Bond (CLSE), All-Bond Universal etch-and-rinse mode (ALER), and All-Bond Universal self-etch mode (ALSE). SBS was measured for half of the specimens at 24 hours, and the other half were thermocycled in water baths (group T). Fracture surfaces were examined to determine the failure mode. The SBS was measured, and data were analyzed using 1-way analysis of variance, the Student's t-test, and the Tukey honestly significant difference test (p = 0.05). Results: No significant differences in SBS were found between groups C and H for any adhesive system at 24 hours. After thermocycling, a statistically significant difference was observed between CT+ALSE and HT+ALSE (p < 0.05). When All-Bond Universal was applied to hemostatic agent-contaminated dentin, the SBS of H+ALSE was significantly lower than that of H+ALER (p < 0.05). The SBER subgroups showed no significant differences in SBS regardless of treatment and thermocycling. Conclusions: When exposed dentin was contaminated by an aluminum chloride hemostatic agent before dentin adhesive treatment, application of All-Bond Universal in etch-and-rinse mode was superior to self-etch mode.

금전착이 치과용 합금과 전장 레진간의 접착 강도에 미치는 영향 (EFFECT OF GOLD ELECTRODEPOSIT ON THE BOND STRENGTH BETWEEN ALLOYS AND VENEERED RESIN)

  • 양홍서;박영준
    • 대한치과보철학회지
    • /
    • 제35권1호
    • /
    • pp.103-117
    • /
    • 1997
  • The purpose of this experiment was to determind whether the gold electrodeposit on Pd-Ag and Ni-Cr alloys influences on the shear bond strength between veneering resin and silicoated metal surface. All the metal specimens were sandblasted with $250{\mu}m$ aluminum oxide and followed by silicoating and resin veneering. According to the metal surfaces to be veneered, experimental groups were divided into five. Group Prec : Gold alloy without gold coating Group Semi : Pd-Ag alloy without gold coating Group Base : Ni-Cr alloy without gold coating Group Semi-G : Pd-Ag alloy with gold coating Group Base-G : Ni-Cr alloy with gold coating All specimens were thermocycled 1,000 times at temperature of $5^{\circ}C$ to $55^{\circ}C$. The effects of gold electrodeposit on the shear bond strength between resin and metal interface were measured and fractured surface of the resin veneered metal was examined under the scaning electron microscope. The following results were obtained 1. The shear bond strength between resin and metal was $64.51{\pm}11.11Kg/cm^2$ in Prec group, $62.77{\pm}11.23Kg/cm^2$ in Base group and $58.97{\pm}9.20Kg/cm^2$ in Semi Group. There was no significant difference among the groups. 2. The bond strength in groups Semi-G and Base-G decreased about 17%, compared to the nongold-electrodeposit groups(Semi, Base). 3. In groups of non electrodeposit(Prec, Semi, Base), fracture occurred at the interface between alloy and resin, while fracture interface was observed between gold coating and resin in group Semi-G, and between metal substrate and gold coating in group Base-G respectively.

  • PDF

Anaysis of Fe in Seepage Water and Precipitates around a Hydrothermal Alteration Zone

  • Yun, Hyun-Seok;Moon, Seong-Woo;Lee, Jin-Kook;Jeong, Gyo-Cheol;Seo, Yong-Seok
    • 지질공학
    • /
    • 제27권3호
    • /
    • pp.345-351
    • /
    • 2017
  • Acid drainage in civil engineering structures such as tunnels may lead to the deposition of precipitates that clog drainage channels and pipework. In evaluating acid drainage, the Fe content of water and precipitates, indicated by reddish brown coloration of rock surfaces, rivers, and soils, may be an important factor. In this study, acid drainage was evaluated by analyzing the Fe content of reddish brown seepage water that occurred in part of a tunnel. Geological investigations around the tunnel revealed a hydrothermal alteration zone cutting the bedrock, and cropping out in the upper parts of the tunnel. Analysis of drillcore revealed many fracture zones and veins. Inductively coupled plasma spectrophotometric analyses of water, precipitates, and soil samples, collected in the seepage water zone and around the tunnel, were conducted to evaluate acid drainage. The Fe content of seepage water in the tunnel was 0.030-0.333 mg/kg, which is 2-22 times higher than in local groundwater. The Fe content of precipitates in the tunnel was 165,403-301,051 mg/kg, similar to the 206,167-422,964 mg/kg content of drillcore from the hydrothermal alteration zone located above the tunnel. It is concluded that the seepage water is derived from Fe-containing acid drainage flowing in perforated tunnel drainpipes along the fracture zones and veins around the hydrothermal alteration zone.

Low-shrinking composites. Are they reliable for bonding orthodontic retainers?

  • Uysal, Tancan;Sakin, Caglar;AI-Qunaian, Talal
    • 대한치과교정학회지
    • /
    • 제41권1호
    • /
    • pp.51-58
    • /
    • 2011
  • Objective: To evaluate the shear bond strength (SBS), fracture mode, wire pull out (WPO) resistance and microleakage between low-shrinking and conventional composites used as a lingual retainer adhesive. Methods: A total of 120 human mandibular incisor teeth, extracted for periodontal reasons, were collected. Sixty of them were separated into two groups. To determine the SBS, either Transbond-LR (3M-Unitek) or Silorane (3M-Espe) was applied to the lingual surface of the teeth by packing the material into standard cylindrical plastic matrices (Ultradent) to simulate the lingual retainer bonding area. To test WPO resistance, 20 samples were prepared for each composite where the wire was embedded in the composite materialand cured. Then tensile stress was applied until failure of the composite occurred. The remaining 60 teeth were divided into two groups and multi-stranded 0.0215-inch diameter wire was bonded with the same composites. Microleakage was evaluated by the dye penetration method. Statistical analyses were performed by Wilcoxon, Pearson chi-square, and Mann-Whitney-U tests at p < 0.05 level. Results: The SBS and WPO results were not statistically significant between the two groups. Significant differences were found between the groups in terms of fracture mode (p < 0.001). Greater percentages of the fractures showed mix type failure (85%) for Silorane and adhesive (60%) for Transbond-LR. Microleakage values were lower in low-shrinking composite than the control and this difference was found to be statistically significant (p < 0.001). Conclusions: Low-shrinking composite produced sufficient SBS, WPO and microleakage values on the etched enamel surfaces, when used as a lingual retainer composite.