• Title/Summary/Keyword: fracture surfaces

Search Result 432, Processing Time 0.026 seconds

FRACTURE BEHAVIOUR OF POSTERIOR COMPOSITE RESINS (구치부(臼齒部) 수복용(修復用) Composite Resin의 파괴거동(破壞擧動)에 관(關)한 연구(硏究))

  • Park, Young-Ho;Min, Byung-Soon;Park, Sang-Jin;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.2
    • /
    • pp.33-44
    • /
    • 1987
  • The use of composite resin for the posterior teeth gives rise to clinical problem due to the lack of mechanical properties. The purpose of this study was to observe the fractured surfaces of light posterior composite resins which are P-10, Clearfil posterior, Adaptic anterior & posterior, P-30, Lite-fil posterior, Estilux posterior, Helio-molar, and Ful-fil com pules (Table 1). The failure of composite resin specimens of I, T and Y-Type (Fig. 1,2) occured under compression. Fractographical observations by SEM (JSM-T20, JEOL) were carried out in order to examine the fracture behaviour of eight composite resins in different types of specimens. The results obtained from this study were as follows: 1. Similar features were found in fractured surfaces of eight composite resins. 2. The crack growth was initiated at the regions of porosities. 3. The crack propagated on the filler-matrix interface. 4. As the crack increased in size, it accelerated to form secondary crack. 5. The fracture behaviour was dependent on the content, size, shape, and distribution of fillers.

  • PDF

A study of mixed-mode interlaminar fracture toughness of graphite/epoxy composite (炭素纖維强化 複合材料의 혼합모우드 層間破壞靭性値에 대한 硏究)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.198-207
    • /
    • 1986
  • This study investigates interlaminar fracture characteristics of Graphite/Epoxy composite (HFG Graphite/Epoxy) under mode I (opening mode), mode II (sliding mode) and mixed mode loading conditions. The effects on interlaminar fracture toughness due to different fiber orientations on the crack surface are also investigated. The antisymmetric test fixture proposed by M. Arcan is used for this test. Both critical stress intensity foctors and critical energy release rates were determined and several mixed mode fracture criteria were compared to the experimental data. Also fracture surfaces were investigaed to obtain informations on the fracture behaviors of Graphite/Epoxy composite by means of a scanning electron microscope(SEM).

Friction and Wear at Ceramic Coated Surfaces of Aluminum Alloy (알루미늄 합금표면에 코팅된 세라믹재의 마찰마멸 특성)

  • 공호성;권오관;김형선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3083-3093
    • /
    • 1993
  • Friction and wear at ceramic coated surfaces of aluminum alloy were experimentally studied using a Ring-on-Block wear test machine. Ceramic materials coated on aluminum alloy surfaces were WC, CrC, $Al_{2}O_{3}$ by a plasma spray; and $Al_{2}O_{3}$,$Al_{2}SiO_{5}$, $Na_{2}B_{4}O_{7}$,$Na_{4}P_{2}O_{7}$, and $Al_{2}O_{3}-ZrO_{2}$ composite coating by an Anodic Spark Depositon. They were tested under the sliding wet contact and compared with aluminum alloys and steels. Test results showed that ceramic coated surfaces, in general, have better anti-wear property than those of aluminum alloys due to increase in the surface hardness ; however, they also showed higher coefficients of friction and changes in wear mechanisms, resulting in brittle fractures.

Failure Paths Analyses of the Leadframe/EMC System

  • Lee, H.Y.;Kim, S.R.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2000
  • Copper-based leadframe sheets were oxidized in a black-oxide forming solution, and molded with epoxy molding compound (EMC) to form sandwiched double-cantilever beam (SDCB) specimens. The adhesion strength of leadframe/EMC interface was measured in terms of fracture toughness by using SDCB specimens and the fracture surfaces were analyzed by various equipments such as glancing-angle XRD, AFM, and SEM. Results showed that three types of failure paths, which were closely related to the surface condition of leadframes before molding.

  • PDF

The fractal analysis of the fracture surface of concretes made from different coarse aggregates

  • Prokopski, Grzegorz;Konkol, Janusz
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.239-248
    • /
    • 2005
  • The article presents the results of examination of the fractal dimension D of concrete specimen fracture surfaces obtained in fracture toughness tests. The concretes were made from three different types of coarse aggregate: gravel, dolomite and basalt aggregate. Ordinary concretes (C40) and high-performance concretes (HPC) were subjected to testing after 7, 14, 28 and 90 days of curing, respectively. In fracture toughness and compressive tests, different behaviours of concretes were found, depending on the type of aggregate and class of concrete (C40, HPC). A significant increase in the strength parameters tested occurred also after a period of 28 days (up to the $90^{th}$ day of curing) and was particularly large for concretes C40. Fractal examinations performed on fracture replicas showed that the fractal dimension D was diverse, depending on the coarse aggregate type and concrete class being, however, statistically constant after 7 and 14 days for respective concretes during curing. The fractal dimension D was the greater, the worse strength properties were possessed by the concrete. A cross-grain crack propagation occurred in that case, due to weak cohesion forces at the coarse aggregate/mortar interface. A similar effect was observed for C40 and HPC made from the same aggregate. A greater dimension D was exhibited by concretes C40, in which case the fracture was easier to form compared with high-performance concretes, where, as a result of high aggregate/mortar cohesion forces, the crack propagation was of inter-granular type, and the resulted fracture was flatter.

Effect of moisture on interlaminar fracture toughness of CFRP composites (CFRP 복합재료의 층간파괴인성치에 미치는 수분의 영향)

  • 김형진;김종훈;고성위;김엄기
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.75-83
    • /
    • 1996
  • Polymeric composites can be subjected to a wide variety of environmemtal conditions in practical use. One of most important conditions to be considered in the stuctural design using such materials is the miisture envirnment. Thus the moisture effect on interlaminar fracture toughness $G_IC$ and $G_IIC$ of CFRP(carbon fiber reinforced plastic) composed of carbon fibers and epoxy resin is studied in this paper. Specimens were first processed in 25, 50, $80^{\circ}C$ flesh water and $25^{\circ}C$ sea water for various periods of time. After that, the water absorption and fracture toughness tests were performed under laboratory atmosphere. As result, the specimen processed in $80^{\circ}C$ flesh water indicates the highest misture absorbing capability, the second in $50^{\circ}C$ flesh water, the third in $25^{\circ}C$ sea water, and the specimen in $25^{\circ}C$ flesh water does the lowest. The interlaminar fracture toughness $G_IC$ increases, approaches to the maximum, and decreases as the immersion time increases. In case of interlaminar $G_IIC$, the value of the specimen processed in $80^{\circ}C$ flesh water turns out to be higher than others. In addition, the scanning electron micrographs(SEM) of fracture surfaces were also examined in order to explain the mechanism of fracture.

  • PDF

A STUDY OF SHEAR STRESS AND FRACTURE PATTERN OF VARIOUS DENTIN BONDING RESTORATIVE MATERIALS (수종 상아질접합 수복재의 전단응력 및 파절형태에 관한 연구)

  • Shin, Dong-Hoon;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.1
    • /
    • pp.95-105
    • /
    • 1986
  • For the purpose of obtaining a basic data in selecting a suitable material with clinical care, this study was designed to measure the shear stress and to examine the fracture pattern of various dentin bonding restorative materials using 43 extracted bicuspids. The following results were obtained. 1. In dentin, Silux/Scotchbond group showed the highest value ($34.5{\pm}14.7kg/cm^2$) and Fuji Ionomer Type II group and Heliosit/Dentin-Adhesit group showed almost same bond strength in the next place. Durafill/Dentin-Adhesive group showed an infinitesimal value. ($3.1{\pm}1.4kg/cm^2$) 2. Every group showed no difference in bond strength between upper and lower teeth. Between buccal and lingual surfaces. Fuji Ionomer Type II and Durafill/Dentin-Adhesive groups showed too. But, in Silux/Scotchbond and Heliosit/Dentin-Adhesit groups, it was shown that the bond strength in lingual was stronger than in buccal. 3. There was resin fracture with cohesive fracture of bonding agent in Enamel group. In dentin, adhesive-cohesive fracture and adhesive fracture were shown. 4. The stronger bond strength was, the more frequently cohesive fracture occurred. Dentin-Adhesit group showed specific shining appearance as if varnish became hard.

  • PDF

Cleavage Fracture Phenomenon in Silicon Chips with Wafer Grinding-Induced Scratch Marks (웨이퍼 그라인딩 공정으로 생성된 스크래치 마크를 갖는 실리콘 칩들에서의 벽개 파괴현상)

  • Lee, Dong-Ki;Lee, Tea-Gyu;Lee, Seong-Min
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.726-731
    • /
    • 2011
  • The present work shows how the flexural displacement-induced fracture strength of silicon devices, whose back surfaces have wafer grinding-induced scratch marks, depends on the crystallographic orientation. Experimental results indicate that silicon devices with scratch marks parallel to their lateral direction (i.e. reference axis in this work) are very susceptible to flexural fracture, as compared to devices with marks which deviated from the direction. The 3-point bending test shows that the fracture strength of silicon devices having marks which are oriented away from the reference axis is 2.6 times higher than that of devices with marks parallel to the axis. It was particularly interesting to see that silicon devices with identical preferred marks even reveal different fracture strengths, depending on whether the marks are involved in specific crystal planes such as {111} or {011}, called cleavage planes. This work demonstrates that silicon devices with the reference axis-aligned scratch marks not existing on such cleavage planes can have higher fracture strength approximately 20% higher than those existing on the planes.

Fractography of the Wood Materials Ruptured by Shear Stress (구조용 목질재료의 전단파괴기구 해명을 위한 파면해석적 연구)

  • ;Juichi Tsutsumi
    • Journal of the Korea Furniture Society
    • /
    • v.10 no.1
    • /
    • pp.23-32
    • /
    • 1999
  • The ultrastructural characteristics of shear fracture surfaces of laminated wood prepared from major four Korea wood specimens were examined. Commercial urea and urethan resin were used as adhesives for laminated woods of both homospecies and heterospecies. The morphology of fracture surface was observed using an optical microscopy and scanning electron microscopy. Three anatomical failure types were recognized : intercell failure, intrawall failure and transwall failure. In dry specimen, failure occurred mainly in woods. Laminated woods of softwoods showed mostly intrawall failure and transwall failure of tracheids, and them of hardwoods indicated mainly intrawall failure and interwall failure. Laminated woods prepared with urethan resin showed coarse fracture surface, on the other hand, those prepared with an urea formaldehyde resin had clean surface. In wet specimen, failure occurred dominantly in glue line. Intrawall failure and flags were characterized in laminated wood prepared with urethan resin. In heterospecies laminated woods, failure was occurred mainly in softwood. Consequently, fracture morphology of laminated wood may be influenced by adhesives, moisture content, species and anatomical characteristics.

  • PDF

Evaluation of Mixed-mode Interlaminar Fracture Toughness of Carbon Fabric/Epoxy Composites for Tilting Train Carbody (틸팅차량용 탄소섬유직물/에폭시 복합재의 혼합모우드 층간파괴인성 평가)

  • Yun, Seong-Ho;Heo, Gwang-Su;O, Jin-O;Lee, Sang-Jin;Jeong, Jong-Cheol;Kim, Jeong-Seok
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.256-259
    • /
    • 2005
  • Mixed-mode interlaminar fracture toughness of carbon fabric/epoxy composites, which are applicable to tilting train carbody, was evaluated through the MMB (Mixed-mode bending) test. Specimens were made of CF3327 plain woven fabric with epoxy and a starter delamination at one end was made by inserting Teflon film with the thickness of 12.5 μ m. Mixed-mode interlaminar fracture test was conducted for 6 types of specimens with the mode II ratio of 20 ,35, 50, 65, 80, 90%. Also crack propagating behaviors and fractured surfaces were examined through an optical travelling scope and a scanning electron microscope, respectively.

  • PDF