• Title/Summary/Keyword: fracture surfaces

Search Result 432, Processing Time 0.025 seconds

Evaluation of the Crack Initiation of Curved Compact Tension Specimens of a Zr-2.5Nb Pressure Tube Using the Unloading Compliance and Direct Current Potential Drop Methods (제하 컴플라이언스법 및 직류전위차법을 이용한 Zr-2.5Nb 압력관 휘어진 CT 시편의 균열시작 평가)

  • Jeong, Hyeon-Cheol;Ahn, Sang-Bok;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1118-1122
    • /
    • 2005
  • The direct current potential drop (DCPD) method and the unloading compliance (UC) method with a crack opening displacement gauge were applied simultaneously to the Zr-2.5Nb curved compact tension (CCT) specimens to determine which of the two methods can precisely determine the crack initiation point and hence the crack length for evaluation of their fracture toughness. The DCPD method detected the crack initiation at a smaller load-line displacement compared to the UC method. As a verification, a direct observation of the fracture surfaces on the curved compact tension specimens was made on the CCT specimens experiencing either 0.8 to 1.0 mm load line displacement or various loads from $50\%\;to\;80\%$ of the maximum peak load, or $P_{max}$. The DCPD method is concluded to be more precise in determining the crack initiation and fracture toughness, J in Zr-2.5Nb CCT specimens than the UC method.

In vitro performance and fracture resistance of novel CAD/CAM ceramic molar crowns loaded on implants and human teeth

  • Preis, Verena;Hahnel, Sebastian;Behr, Michael;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.300-307
    • /
    • 2018
  • PURPOSE. To investigate the fatigue and fracture resistance of computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic molar crowns on dental implants and human teeth. MATERIALS AND METHODS. Molar crowns (n=48; n=8/group) were fabricated of a lithium-disilicate-strengthened lithium aluminosilicate glass ceramic (N). Surfaces were polished (P) or glazed (G). Crowns were tested on human teeth (T) and implant-abutment analogues (I) simulating a chairside (C, crown bonded to abutment) or labside (L, screw channel) procedure for implant groups. Polished/glazed lithium disilicate (E) crowns (n=16) served as reference. Combined thermal cycling and mechanical loading (TC: $3000{\times}5^{\circ}C/3000{\times}55^{\circ}C$; ML: $1.2{\time}10^6$ cycles, 50 N) with antagonistic human molars (groups T) and steatite spheres (groups I) was performed under a chewing simulator. TCML crowns were then analyzed for failures (optical microscopy, SEM) and fracture force was determined. Data were statistically analyzed (Kolmogorow-Smirnov, one-way-ANOVA, post-hoc Bonferroni, ${\alpha}=.05$). RESULTS. All crowns survived TCML and showed small traces of wear. In human teeth groups, fracture forces of N crowns varied between $1214{\pm}293N$ (NPT) and $1324{\pm}498N$ (NGT), differing significantly ($P{\leq}.003$) from the polished reference EPT ($2044{\pm}302N$). Fracture forces in implant groups varied between $934{\pm}154N$ (NGI_L) and $1782{\pm}153N$ (NPI_C), providing higher values for the respective chairside crowns. Differences between polishing and glazing were not significant ($P{\geq}.066$) between crowns of identical materials and abutment support. CONCLUSION. Fracture resistance was influenced by the ceramic material, and partly by the tooth or implant situation and the clinical procedure (chairside/labside). Type of surface finish (polishing/glazing) had no significant influence. Clinical survival of the new glass ceramic may be comparable to lithium disilicate.

Evaluation of intaglio surface trueness, wear, and fracture resistance of zirconia crown under simulated mastication: a comparative analysis between subtractive and additive manufacturing

  • Kim, Yong-Kyu;Han, Jung-Suk;Yoon, Hyung-In
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.122-132
    • /
    • 2022
  • PURPOSE. This in-vitro analysis aimed to compare the intaglio trueness, the antagonist's wear volume loss, and fracture load of various single-unit zirconia prostheses fabricated by different manufacturing techniques. MATERIALS AND METHODS. Zirconia crowns were prepared into four different groups (n = 14 per group) according to the manufacturing techniques and generations of the materials. The intaglio surface trueness (root-mean-square estimates, RMS) of the crown was measured at the marginal, axial, occlusal, and inner surface areas. Half of the specimens were artificially aged in the chewing simulator with 120,000 cycles, and the antagonist's volume loss after aging was calculated. The fracture load for each crown group was measured before and after hydrothermal aging. The intaglio trueness was evaluated with Welch's ANOVA and the antagonist's volume loss was assessed by the Kruskal-Wallis tests. The effects of manufacturing and aging on the fracture resistance of the tested zirconia crowns were determined by two-way ANOVA. RESULTS. The trueness analysis of the crown intaglio surfaces showed surface deviation (RMS) within 50 ㎛, regardless of the manufacturing methods (P = .053). After simulated mastication, no significant differences in the volume loss of the antagonists were observed among the zirconia groups (P = .946). The manufacturing methods and simulated chewing had statistically significant effects on the fracture resistance (P < .001). CONCLUSION. The intaglio surface trueness, fracture resistance, and antagonist's wear volume of the additively manufactured 3Y-TZP crown were clinically acceptable, as compared with those of the 4Y- or 5Y-PSZ crowns produced by subtractive milling.

COMPARATIVE STUDY ON THE FRACTURE STRENGTH OF EMPRESS 2 CERAMIC AND TARGIS-VECTRIS CROWN

  • Cha Young-Joo;Yang Jae-Ho;Lee Sun-Hyung;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.599-610
    • /
    • 2001
  • Due to an increasing interest in esthetics and concerns about toxic and allergic reactions to certain alloys, patients and dentists have been looking for metal-free tooth-colored restorations. Recent improvement in technology of new all-ceramic materials and composite materials has broadened the options for esthetic single crown restorations. The aim of this investigation was to study the fracture strength of the metal-free posterior single crowns fabricated using two recently introduced systems, Empress 2 ceramic and Targis-Vectris. Forty premolar-shaped stainless steel dies with the 1mm-wide circumferential shoulder were prepared. Ten cylindrical crowns having a diameter of 8.0mm and total height of 7.5mm were fabricated for each crown system respectively(PFM, Empress staining technique, Empress 2 layering technique, and Targis- Vectris). The crowns were filled with cement and placed on the stainless steel dies with firm finger pressure. The crowns were then stored in distilled water at room temperature for 24 hours before testing. The crowns were tested for fracture strength in an Instron universal testing machine (Instron 6022). With a crosshead speed of 1mm/min the center of the occlusal surface of the crown was loaded using a 4-mm-diameter stainless steel ball until fracture occurred. The fracture surfaces of the crowns were gold coated and examined using scanning electron microscopy(Jeol JSM-840 Joel Ltd., Akishima, Tokyo, Japan). Within the parameters of this study the following conclusions were drawn: 1. The mean fracture strength for PFM crowns was 5829(${\pm}906$)N; for Empress staining technique the fracture strength was 1697(${\pm}604$)N; for Empress 2 Layering technique the fracture strength was 1781N(${\pm}400$)N, and the fracture strength for Targis- Vectris was 3093(${\pm}475$)N. 2. The fracture strength of the PFM crowns was significantly higher than that of the Empress 2 and the Targis-Vectris crowns (P<0.05). 3. The fracture strength of the Targis-Vectris crowns was significantly higher than that of the Empress 2 crowns (P<0.05). 4. No statistical difference was found when Empress staining technique was compared with Empress 2 layering technique. 5. The SEM image of fracture surface of Empress 2 crown showed a very dense microstructure of the lithium disilicate crystals and the SEM image of fracture surface of Targis-Vectris crown showed indentations of Vectris and some fibers tom off from Vectris.

  • PDF

Evaluation of Pull Strengths and Fracture Modes of Solder Joino by Modified Ball Pull Testing with Protrusion Jaw (Protrusion Jaw가 적용된 볼 당김시험을 이용한 솔더 접합부의 강도와 파괴 메커니즘 분석에 관한 연구)

  • Kim Hyoung-Il;Han Sung-Won;Kim Jong-Min;Choi Myung-Ki;Shin Young-Eul
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.34-40
    • /
    • 2005
  • There have been numerous approaches to examine the bonding strengths of solder joints. However, despite the technical and practical limitations, the precedent test methods such as the ball shear and ball pull tests are being used in industrial applications. In this study, the optimum jaw pressure with the modified protrusion jaw was introduced in order to obtain higher successful rate f3r ball pull testing. Furthermore, the pull strengths and fracture modes of Sn-8Zn-3Bi, Sn-4Ag-0.7Cu, and Sn-37Pb eutectic solder after isothermal aging tests ($100^{\circ}C,\;150^{\circ}C$), were evaluated with the protrusion jaw. The pull strength-displacement hysteresis curves and fracture surfaces were carefully investigated to evaluate the correlation between the pull strengths and the fracture modes of each solder. In conclusion, it is verified that Au-Zn IMCs (Intermetallic Compounds) have a detrimental effect on the pull strengths and changed fracture modes of Sn-8Zn-3Bi solder. Meanwhile, the microstructure transformation influences the degradation of pull strengths of Sn-4Ag-0.7Cu and Sn-37Pb solders.

Impact Damge and Residual Bending Strength of CFRP Composite Laminates Subjected to Impact Loading Fracture Mechanism and Impact Damage of Orthotropy Laminated Plates (충격하중을 받는 CFRP 적층판의 충격손상과 굽힘 잔류강도 직교 이방성 적층판의 충격손상과 파과메카니즘)

  • 심재기;양인영;오택열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2752-2761
    • /
    • 1993
  • The purpose of this study is to confirm the decreasing problems of residual bending strength, and the fracture machanism experimentally when CFRP composite laminates are subjected to Foreign Object Damage. Composite laminates used for this experiment are CFRP orthotropy laminated plates, which have two-interfaces [O/sub 6//sup o//90/sub 6//sup o/]sub sym/ and four-interfaces [O/sub 3//sup o//90/sub 6//sup o//O/sub 3//sup o]/sub sym/. When the specimen is subjected to transverse impact by a steel ball, the delamination area generated by impact damage is observed by using SAM(Scanning Acoustic Microscope). also, Thefracture surfaces obtained by three-point bending test were observed by using SEM (Scanning Electron Microscope). Then, fracture mechanism was investigated based on the observed delamination area and fracture surface. The results were summarized as follows; (1) It is found that for the specimen with more interface, the critical delamination energy is increased while delamination-development energy is decreased. (2) Residual bending strength of specimen A is greater than that of Specimen B within the impact range of impact energy 1. 65J (impacted-side compression) and 1. 45J (impacted-side tension). On the other hand, when the impact energy is beyond the above ranges, residual bending strength of specimen A is smaller than that of specimen B. (3) In specimen A and B, residual strength of CFRP plates subjected to impact damage is lower in the impacted-side compression than in the impacted-side tension. (4) In the case of impacted-side compression, fracture is propagated from the transverse crack generat-ed near impact point. On the other hand, fracture is developed toward the impact point from the edge of interface-B delamination in the case of impacted-side tension.

High Cyclic Fatigue Life and Fracture Behaviors of Shot-Peened Bearing Steel (쇼트피닝 처리를 한 베어링강의 고사이클 피로수명 및 파괴거동)

  • Yoon, Sang-Jae;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1119-1129
    • /
    • 2011
  • Shot-peening effects on the fatigue behavior of bearing steel were investigated under the high cyclic loading. Hourglass shape specimens were made of bearing steel(JIS-SUJ2) for rotary bending fatigue tests. Two kinds of treatments were performed : a heat treatment and a shot-peened surface treatment after the heat treatment. The fracture surfaces of specimens were classified into two types of fracture mode : the surface fracture mode induced by a surface defect and the internal fracture mode induced by a nonmetallic inclusion. Inclusion depth and shape affected considerably the fatigue life. Shot-peening treatment improved much the fatigue life of the bearing steel under low and high levels of cyclic loads. Probabilistic-stress-life (P-S-N) curves were suggested for the reliable fatigue life estimation of the improved bearing steel.

High performance epoxy nanocomposites with amine-functionalized graphenes

  • Park, Sol-Mon;Kim, Dae-Su
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.470-473
    • /
    • 2010
  • Graphene, consisting of a single layer of carbon in a two-dimensional lattice, has been emerging as a fascinating material with many unique physical, chemical and mechanical properties. In this study, graphenes were prepared by a chemical method. To develop high performance polymer nanocomposites reinforced by graphenes, adequate dispersion of the fillers and strong interfacial bonding between the fillers and the polymer matrix are essential. The purpose of this study was to examine the influence of introducing amine groups on the surfaces of graphenes. FT-IR spectroscopy, SEM were used to confirm the functionalization. Epoxy nanocomposites comprising the graphenes were prepared and their characteristics were investigated by DSC, DMA and TMA. Fracture surfaces of the nanocomposites were investigated by SEM. The functionalized graphenes induced strong interfacial bonding than the pristine graphenes and resulted in considerable improvements in the performance of the nanocomposites.

  • PDF

A Study on the Nano-Deformation Characteristics of Grain-Size Controlled Rheology Material Surfaces for Surface Crack Prediction (표면크랙 예측을 위한 결정립 제어 레오로지 소재 표면의 나노 변형특성에 관한 연구)

  • 윤성원;김현일;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.355-358
    • /
    • 2004
  • In this study, the deformation characteristics of grain-size controlled rheology materials surfaces were investigated as a part of the research on the surface crack prediction in semi-solid formed automobile components. The microstructure of rheology Al-Si alloys consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary region of semi-solid aluminum alloys (356 alloy and 319 alloy) were investigated through the nanoindentation/scratch experiments and the AFM observation.

  • PDF

Friction and Wear Behaviors of Conventional Composite Resins (재래형 콤포짓트 레진의 마찰 . 마멸거동)

  • 임정일;서세광;김교한;김석삼
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.166-172
    • /
    • 2000
  • The friction and wear characteristics of dental composite resins such as Charisma, Elitefil, TPH and Veridonfil were investigated. Furthermore, The surface characteristics examination, the analysis of contents of filler, Victors hardness and fracture toughness measurement of composite resins were preformed. The wear test applied ball to move reciprocationally on flat wear tester at room temperature. Microstructure of surfaces and worn surfaces were observed by SEM. Experimental results indicate that the friction coefficient of TPH was quite low, and the wear resistance of TPH was better than that of Charisma, Elitefil or Veridonfil at the same condition. The main wear mechanism was found to be plastic flow and abrasive wear by failure of filler's bond to the matrix.