• Title/Summary/Keyword: fracture size

Search Result 1,062, Processing Time 0.027 seconds

Effect of Grain Size and Aging Conditions on Mechanical Properties of Al-Mg-X (X=Cr,Si) Alloy (Al-Mg-X (X=Cr, Si)합금의 기계적성질에 미치는 결정립크기와 시효조건의 영향)

  • Chang-Suk Han;Chan-Woo Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.77-85
    • /
    • 2023
  • In this study, the mechanical properties of the Al-Mg-X (X=Cr, Si) alloy, which clearly showed the influence of the specimen and grain size, were investigated by changing the specimen size extensively. In addition, the effect on the specimen size, grain size and aging condition on the mechanical properties of the grain refining alloy according to the addition of Cr was clarified, and the relationship between these factors was studied. As the specimen size decreased, the yield stress decreased and the fracture elongation increased. This change was evident in alloys with coarse grain sizes. Through FEM analysis, it was confirmed that the plastic deformation was localized in the parallel part of specimen S2. Therefore, when designing a tensile specimen of plate material, the W/L balance should be considered along with the radius of curvature of the shoulder. In the case of under-aged materials of alloys with coarse grain size, the fracture pattern changed from intergranular fracture to transgranular fracture as W/d decreased, and δ increased. This is due to the decrease in the binding force between grains due to the decrease in W. In the specimen with W/d > 40 or more, intergranular fracture occurred, and local elongation did not appear. Under-aged materials of alloys with fine grain size always had transgranular fracture over a wide range of W/d = 70~400. As W/d decreased, δ increased, but the change was not as large as that of alloys with coarse grain sizes. Compared to the under-aged material, the peak-aged material did not show significant dependence on the specimen size of σ0.2 and δ.

Effect of specimen size on fracture toughness of reduced activation ferritic steel (JLF-l) (저방사화 철강재 (JLF-1)의 파괴인성에 미치는 시험편 크기의 영향)

  • Kim, Dong-Hyun;Yoon, Han-Ki;Park, Won-Jo;Katoh, Y.;Kohyama, A.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.300-305
    • /
    • 2003
  • Reduced activation ferritic (JLF-1) steel is leading candidates for blanket/first-wall structures of the D-T fusion reactor. In fusion application, structural materials will suffer effects of repeated changes of temperature. Therefore, the data base of tensile strength and fracture toughness at operated temperature $400^{\circ}C$ are very important. Fracture toughness ($J_{IC}$) and tensile tests were carried out at room temperature and elevated temperature ($400^{\circ}C$). Fracture toughness tests were performed with two type size to investigate the relationship between the constraint effect of a size and the fracture toughness resistance curve. As the results, the tensile strength and the fracture toughness values of the JLF-1 steel are slightly decreased with increasing temperature. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. The fracture toughness values of JLF-1 steel at room temperature and at $400^{\circ}C$ shows an excellent fracture toughness ($J_{IC}$) of about $530kJ/m^2\;and\;340kJ/m^2$, respectively.

  • PDF

Effect of medium coarse aggregate on fracture properties of ultra high strength concrete

  • Karthick, B.;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.103-114
    • /
    • 2021
  • Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm - 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load - deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.

Directional Effect of Applied Pressure during the Sintering on the Microstructures and Fracture Toughness of Heat-treated Silicon Nitride Ceramics (소결시의 가압방식이 열처리 후 질화규소의 미세조직과 파괴인성에 미치는 영향)

  • 이상훈;박희동;이재도
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.653-658
    • /
    • 1995
  • Directional effect of applied pressure during sintering on the microstructure and fracture toughness of the heat-treated silicon nitride ceramics has been investigated. The specimens with a composition of 92Si3N4-8Y2O3(in wt%) were sintered at 172$0^{\circ}C$ by a hot press (HP ) and a hot isostatic press (HIP) and heat-treated for grain growth at 1800~20$0^{\circ}C$. The fracture toughness of the HP samples increased with the grain size while the fracture toughness of the HIP treated samples remained the same even though the grain growth occurred. This discrepancy was explained by a bimodal grain size distribution and large aspect ratio of the HPed samples and a monomodal grain size distributjion and samll aspect ratio of the HIP treated samples.

  • PDF

Evaluation of Fracture Behavior and Formation of Microcrack of Alumina Ceramics by Acoustic Emission (AE에 의한 알루미나 세라믹스의 Microcrack 생성과 파괴거동의 평가)

  • 장병국;우상국
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.551-558
    • /
    • 1998
  • Detection of microcrack in {{{{ {Al }_{2 } {O }_{3 } }} ceramics were studided by AE(acoustic emission) technique with 4-point bending test in order to evaluate the fracture process and formation of microcrack. Fully-dense alu-mina ceramics having a different grain size were fabricated by varing the hot-pressing temperature. The grain size of alumina increased with increasing the hot-pressing temperature whereas the bending strength decreasd. The microcracks were observed by SEM and TEM. The generation of AE event increased with increasing the applied load and many AE event was generated at maximum applied load. Alumina with smaller grain size shows the generation of many AE event resulting in an increase of microcrack formation. An intergranular fracture is predominantly observed in fine-grained alumina whereas intragranular fracture occurs predominantly in coarse-grained alumina,. Analysis of micorstructure and AE prove that primary mi-crocracks occur within grain-boundaries of alumina. The larger microcracking were formed by the growth and/or coalesence of primary microcracks. Then the materials become to fracuture by main crack gen-eration at the maximum applied load.

  • PDF

Assessment of In-plane Size Effect of Nuclear Materials Based on Damage Mechanics (손상역학에 근거한 원자력 재료의 평면크기 영향 분석)

  • Chang Yoon-Suk;Lee Tae-Rin;Choi Jae-Boong;Seok Chang-Sung;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.393-401
    • /
    • 2006
  • The influences of stress triaxiality on ductile fracture have been investigated for various specimens and structures. With respect to a transferability issue, recently, the interests on local approaches reflecting micromechanical specifics are increased again due to rapid progress of computational environments. In this paper, the applicability of the local approaches has been examined through a series of finite element analyses incorporating modified GTN and Rousselier models as well as fracture toughness tests. The ductile crack growth of nuclear carbon steels is assessed to verify the transferability among compact tension (CT) specimens with different in-plane size. At first, the basic material constants were calibrated for standard CT specimens and used to predict fracture resistance (J-R) curves of larger CT specimens. Then, the in-plane size effects were examined by comparing the numerically estimated J-R curves with the experimentally determined ones. The assessment results showed that the in-plane size effect should be considered for realistic engineering application and the damage models might be used as useful tool for ductile fracture evaluation.

Evaluation of Fracture Toughness by J-A$_2$ Method Considering Size Effect (시편크기의 영향을 고려한 J-A$_2$ 방법에 의한 파괴인성 평가)

  • 이정윤;김영종;김용환;김재훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.153-163
    • /
    • 2000
  • The size effect on fracture toughness was investigated by introducing $J-A_2$ theory. For this application,small size specimens were chosen to establish $J-A_2$ assessment curve with FEM analysis. Two-dimensional FEM analysis was conducted with plane strain model using ABAQUS by domain integral method to calculate both crack tip stress and fracture toughness which were used to establish $J-A_2$ curve. The assessment curve predicted the fracture toughness of large specimens very well when compared to the test values. The results showed good prediction for deep crack specimen, though there were acceptable deviations in shallow cracked specimens, presumably caused by constraint effect. When the curve applied to reactor vessel in order to predict end of life fracture toughness with assumption of on-power pressure test condition, it provided the reasonable pressure compared to the existing design value. Better predictions would be possible if more test data were available.

  • PDF

Fractal analysis on fracture toughness of particulate composites (입자강화 복합재료의 파괴인성에 관한 프랙탈 해석)

  • 김엄기;남승훈;고성위
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.84-91
    • /
    • 1996
  • A fractal analysis on fracture surface of aluminium-particulate SiC composites was attempted. As the volume fraction of SiC in composites increases, the fractal dimension tends to increase. However, no correlation between the fractal dimension and the fracture toughness in terms of critical energy release rate was observed. Since the fractal dimension represents the roughness of fracture surface, the fracture toughness would be a function of not only fracture surface roughness but also additional parameters. Thus the applicability of fractal analysis to the estimation of fracture toughness must depend on the proper choice and interpretation of additioal paramerters. In this paper, the size of characteristic strctural unit for fracture was considered as an additional parameter. As a result, the size appeared to be a function of only volume fraction of SiC. Finally, a master curve for fracture toughness of aluminium-particulate SiC composites was proposed as a function of fractal dimension and volume fraction of SiC.

  • PDF

Impact Tensile Properties and Intergranular Fracture Behavior with Strain Rate Variations of Al-M g-X (X = Cr,Si) Alloy

  • Chang-Suk Han;Min-Gyu Chun;Sung-Soon Park;Seung-In Lim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.330-340
    • /
    • 2024
  • Al-Mg-Si alloys are light weight and have excellent corrosion resistance, and are attracting attention as a liner material for high-pressure hydrogen containers in hydrogen fuel cell vehicles. Because it has excellent plastic hardening properties, it is also applied to car body panel materials, but it is moderate in strength, so research to improve the strength by adding Si-rich or Cu is in progress. So far, the authors have conducted research on the intergranular fracture of alloys with excessive Si addition from the macroscopic mechanical point of view, such as specimen shape. To evaluate their impact tensile properties, the split-Hopkinson bar impact test was performed using thin plate specimens of coarse and fine grain alloys of Al-Mg-X (X = Cr,Si) alloy. The effect of the shape of the specimen on the characteristics was studied through finite element method (FEM) analysis. As a result, it was found that the intergranular fracture of the alloy with excessive Si depended on the specimen width (W)/grain size (d), which can be expressed by the specimen size and grain size. As W/d decreases, the intergranular fracture transforms into a transgranular fracture. As the strain rate increases, the fracture elongation decreases, and the fracture surface of the intergranular fracture becomes more brittle. It was confirmed that intergranular fracture occurred in the high strain rate region even in materials with small grain sizes.

Quantification of Heterogenous Background Fractures in Bedrocks of Gyeongju LILW Disposal Site (경주 방폐장의 불균질 배경 단열의 정량화)

  • Cho, Hyunjin;Cheong, Jae-Yeol;Lim, Doo-hyun;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.463-474
    • /
    • 2017
  • Heterogeneous background fractures of granite and sedimentary rocks in Gyeongju LILW (low-intermediate level radioactive waste) facility area have been characterized quantitatively by analyzing fracture parameters (orientation, intensity, and size). Surface geological survey, electrical resistivity survey, and acoustic televiewer log data were used to characterize the heterogeneity of background fractures. Bootstrap method was applied to represent spatial anisotropy of variably oriented background fractures in the study area. As a result, the fracture intensity was correlated to the inverse distance from the faults weighted by nearest fault size and the mean value of electrical resistivity and the average volumetric fracture intensity ($P_{32}$) was estimated as $3.1m^2/m^3$. Size (or equivalent radius) of the background fractures ranged from 1.5 m to 86 m and followed to power-law distribution based on the fractal property of fracture size, using fractures measured on underground silos and identified surface faults.