• Title/Summary/Keyword: fracture pattern

Search Result 395, Processing Time 0.023 seconds

Unconfined Compressive Strength Characteristics of Eco-Friendly Stabilizers and Carbon Fiber Reinforced Soil (친환경고화재와 탄소섬유 보강토의 일축압축강도 특성)

  • Sewook Oh;Sunghwan Yang;Hongseok Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.8
    • /
    • pp.13-19
    • /
    • 2024
  • In this study, to reinforce the surface layer of weathered soil slopes where erosion and collapse of surface layer occur, compression strength tests were conducted by mixing carbon fiber and eco-friendly stabilizer (E.S.B.) To determine the optimal mixing ratio of E.S.B. and carbon fiber, E.S.B. was set at conditions of 10%, 20%, and 30%, and carbon fiber at 0.3%, 0.6%, 0.9%, and 1.2%. Additionally, to analyze the changes in compressive strength according to dry density and curing period, 85% and 95% of the maximum dry unit weight were applied, and curing periods were set to 3 days, 7 days, and 28 days. The standard strength for surface layer reinforcement of slopes is proposed as 4 MPa at 7 days and 6 MPa at 28 days according to ACI 230.1R-09 (2009). The compression test results showed that the unconfined compressive strength of E.S.B. reinforced soil met the standard strength at an E.S.B. mixing ratio of 10% or more for 95% compaction. Moreover, when carbon fiber was mixed with E.S.B. reinforced soil, a ductile fracture pattern was observed after the yield point due to compressive strength, indicating that the mixture could compensate for post-yield failure. It was analyzed that the maximum strength is exhibited at a carbon fiber mixing ratio of 0.6%. The unconfined compressive strength of carbon fiber reinforced soil increases by approximately 54-70% compared to the condition without carbon fiber.

Mechanical Anisotropy of Pocheon Granite under Uniaxial Compression (일축압축하에서 포천화강암의 역학적 이방성)

  • Park Deok-Won
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.337-348
    • /
    • 2005
  • Jurassic granite from Pocheon area were tested to investigate the effect of microcracks on mechanical properties of the granite. Three oriented core specimens were used for uniaxial compressive tests and each core specimen are perpendicular to the axes'R'(rift plane),'c'(grain plane) and'H'(hardway plane), respectively Among vacious elastic constants, the variation of Poisson's ratio as function of the directions was examined. From the related chart between ratio of failure strength and Poisson's ratio, H-specimen shows the highest range in Poisson's ratio and Poisson's ratio decreases in the order of C-specimen and R-specimen. The curve pattern is nearly linear in stage $I\simIII$ but the slope increases abruptly in stage H-3. As shown in the related chart, diverging point of a curve is formed when ratio of failure strength is $0.92\sim0.96$ Stage IV -3 is out of elastic region. The behaviour of rock in the four fracturing stages was analyzed in term of the stress-volumetric strain me. From the stress increment-volumetric strain equations governing the behaviour of rock, characteristic material constants, a, n, Q, m and $\varepsilon_v^{mcf}$, were determined. Among these, inherent microcrack porosity$(a, 10^{-3})$ and compaction exponent(n) in the microcrack closure region(stage I ) show an order of $a^R(3.82)>a^G(3.38)>a^H(2.32)\;and\;n^R(3.69)>n^G(2.79)>n^H(1.99)4, respectively. Especially, critical volumetric microcrack strain($\varepsilon_v^{mcf}$) in the stage W is highest in the H-specimen, normal to the hardway plane. These results indicate a strong correlation between two major sets of microcracks and mechanical properties such as Poisson's ratio and material constants. Correlation of strength anisotropy with microcrack orientation can have important application in rock fracture studies.

Factors Related to Bone Mineral Content Among Adolescents in Seoul (서울시 일부 청소년의 골질량 관련요인)

  • Shin, Sang-Ah;Hong, Kyung-Eui;Choi, Hyun-Jeong;Roh, Ji-Hyun;Joung, Hyo-Jee
    • Journal of Nutrition and Health
    • /
    • v.41 no.2
    • /
    • pp.156-164
    • /
    • 2008
  • The purpose of this study was to investigate factors related to bone mineral contents (BMC) at os calcis of adolescents. The subjects were 604 students (327 boys and 277 girls) between 7th and 9th grade in Seoul, Korea. The mean age was 14.2 ${\pm}$ 0.9 years. General characteristics were collected by a questionnaire, bone mineral contents (BMC) were measured in os calcis by Duel Energy X-ray Absorptiometry (PIXI, General Electronics, USA) and height and weight were measured by bioelectrical impedance analysis method (Inbody 4.0, Biospace Co. Ltd, Seoul, Korea). Mean BMC of os calsis were 2.241 g. Height (p <.0001), weight (p <.0001I), BMC (p <.0001I) ofboys were higher than those of girls. Percent body fat of girls, however, was higher than that of boys (p <.0001). Anthropometric measurement, pocket money, sibling, experience of fracture, pubertal stage, intake of supplements, physical or outdoors activity, and eating habit had significant influence on BMC of boys. Anthropometric measurement, physical or outdoors activity, and eating habit had significant influence on BMC of girls. Multivariate regression with adjustment for sex and age showed that BMC was associated positively with height, BMI, frequency of regular activity, and intake of spinach or radish leaves (all p <0.05), and negatively with percent body fat (p <.0000 and Korean traditional diet pattern (p = 0.01). On the basis of these results, it is recommended to develop nutrition education and physical activity program for adolescents to improve BMC and prevent osteoporosis.

Mineralogy and Chemical Compositions of Dangdu Pb-Zn Deposit (당두 연-아연 광상의 산출광물과 화학조성)

  • Lim, Onnuri;Yu, Jaehyung;Koh, Sang Mo;Heo, Chul Ho
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.123-140
    • /
    • 2013
  • The Dangdu Pb-Zn deposit is located at approximately 10 km south of Jecheon, Korea. Geology of Dangdu deposit area consists of Pre-cambrian metamorphic rocks, Ordovician sedimentary rocks, Jurassic and Cretaceous igneous rocks. The ore deposit is developed along the fracture trending $N20{\sim}40^{\circ}W$ in Ordovician limestone and is considered to be a skarn type ore deposit. The shape of ore bodies developed in the Dangdu ore deposit can be divided into lens-form(two ore bodies of -30 m level adit and one ore body of -63 m level adit) and pocket-form developed in -30 m level adit. Ore minerals observed in the ore deposits are magnetite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, cosalite, marcasite, hessite, native Bi and bismuthinite. Chemical composition of sphalerite ranges FeS 14.14~18.08 mole%, CdS 0.44~0.70 mole%, MnS 0.52~1.13, 1.53~2.09 mole%. Galena contains a small amount of silver with an average of 0.54 wt.%. An average composition of cosalite is Ag 2.43 wt.%, Bi 44.36 wt.%, Pb 35.05 wt.% which results the chemical formula of cosalite as $Pb_{1.7}Bi_{2.1}Ag_{0.2}S_5$. Skarn minerals consist of epidote, garnet, pyroxene, tremolite, quartz and calcite. The zoning pattern of the ore deposit can be subdivided into epidote-clinopyroxene zone, epidote-clinopyroxene-chlorite zone and epidote-garnet-clinopyroxene zone from the central part of the ore body towards the wall rocks. The chemical composition of garnet shows an increasing trend of grossular from epidote-clinopyroxene zone to epidote-garnet-clinopyroxene zone. Clinopyroxene occurs as a solid solution of diopside and hedenbergite, and the ratio of johannsenite increases from epidote-clinopyroxene zone to epidote-clinopyroxene-chlorite and epidote-garnet-clinopyroxene zones. The mineralization of the ore deposit is considered to be one stage event which can be separated into early skarn mineralization stage, middle ore mineralization stage and late low temperature mineralization stage. The temperature estimation from the low temperature mineralization range from $125{\sim}300^{\circ}C$ which is considered to be representing the temperature of late mineralization.

Tensile bond strength of chairside reline resin to denture bases fabricated by subtractive and additive manufacturing (적층가공과 절삭가공으로 제작한 의치상과 직접 첨상용 레진 간의 인장결합강도 비교)

  • Kim, Hyo-Seong;Jung, Ji-Hye;Bae, Ji-Myung;Kim, Jeong-Mi;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.177-184
    • /
    • 2020
  • Purpose: The purpose of this study was to compare and evaluate the tensile bond strength of chairside reline resin to denture base resin fabricated by different methods (subtractive manufacturing, additive manufacturing, and conventional heat-curing). Materials and methods: Denture base specimens were fabricated as cuboid specimens with a width of 25 mm × length 25 mm × height 3 mm by subtractive manufacturing (VITA VIONIC BASE), additive manufacturing (NextDent Base) and conventional heat-curing (Lucitone 199). After storing the specimens in distilled water at 37℃ for 30 days and drying them, they were relined with polyethyl methacrylate (PEMA) chairside reline resin (REBASE II Normal). The subtractive and additive manufacturing groups were set as the experimental group, and the heat-curing group was set as the control group. Ten specimens were prepared for each group. After storing all bound specimens in distilled water at 37℃ for 24 hours, the tensile bond strength between denture bases and chairside reline resin was measured by a universal testing machine at a crosshead speed of 10 mm/min. The fracture pattern of each specimen was analyzed and classified into adhesive failure, cohesive failure, and mixed failure. Tensile bond strength, according to the fabrication method, was analyzed by 1-way ANOVA and Bonferroni's method (α=.05). Results: Mean tensile bond strength of the heat-curing group (2.45 ± 0.39 MPa) and subtractive manufacturing group (2.33 ± 0.39 MPa) had no significant difference (P>.999). The additive manufacturing group showed significantly lower tensile bond strength (1.23 ± 0.36 MPa) compared to the other groups (P<.001). Most specimens of heat-curing and subtractive manufacturing groups had mixed failure, but mixed failure and adhesive failure showed the same frequency in additive manufacturing group. Conclusion: The mean tensile bond strength of the subtractive manufacturing group was not significantly different from the heat-curing group. The additive manufacturing group showed significantly lower mean tensile bond strength than the other two groups.