• Title/Summary/Keyword: fracture parameters

Search Result 793, Processing Time 0.031 seconds

Pull-out behaviour of recycled aggregate based self compacting concrete

  • Siempu, Rakesh;Pancharathi, Rathish Kumar
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.249-259
    • /
    • 2018
  • The use of recycled aggregate in concrete is gaining much attention due to the growing need for sustainability in construction. In the present study, Self Compacting Concrete (SCC) is made using both natural and recycled aggregate (crushed recycled concrete aggregate from building demolished waste) and performance of recycled aggregate based SCC for the bond behaviour of reinforcement is evaluated. The major factors that influence the bond like concrete compressive strength (Mix-A, B and C), diameter of bar ($D_b=10$, 12 and 16 mm) and embedment length of bar ($L_d=2.5Db$, $5D_b$ and full depth of specimen) are the parameters considered in the present study in addition to type of aggregates (natural and recycled aggregates). The mix proportions of Natural Aggregate SCC (NASCC) are arrived based on the specifications of IS 10262. The mix proportions also satisfy the guidelines of EFNARC. In case of Recycled Aggregate SCC (RASCC), both the natural coarse and fine aggregates are replaced 100% by volume with that of recycled aggregates. These mixes are also evaluated for fresh properties as per EFNARC. The hardened properties like compressive strength, split tensile strength and flexural strength are also determined. The pull-out test is conducted as per the specifications of IS 2770 (Part-1) for determining the bond strength of reinforcement. Bond stress versus slip curves were plotted and a typical comparison of RASCC is made with NASCC. The fracture energy i.e., area under the bond stress slip curve is determined. With the use of recycled aggregates, reduction in maximum bond stress is noticed whereas, the normalised maximum bond stress is higher in case of recycled aggregates. Based on the experimental results, regression analysis is conducted and an equation is proposed to predict the maximum bond stress of RASCC. The equation is in good agreement with the experimental results. The available models in the literature are made use to predict the maximum bond stress and compare the present results.

Performance of self-compacting geopolymer concrete with and without GGBFS and steel fiber

  • Al-Rawi, Saad;Taysi, Nildem
    • Advances in concrete construction
    • /
    • v.6 no.4
    • /
    • pp.323-344
    • /
    • 2018
  • The study herein reports the impact of Steel Fiber (SF) and Ground Granulated Blast Furnaces slag (GGBFS) content on the fresh and hardened properties of fly ash (FA) based Self-Compacting Geopolymer Concrete (SCGC). Two series of self-compacting geopolymer concrete (SCGC) were formulated with a constant binder content of $450kg/m^3$ and at an alkaline-to-binder (a/b) ratio of 0.50. Fly ash (FA) was substituted with GGBFS with the replacement levels being 0%, 25%, 50%, 75%, and 100% by weight in each SCGC series. Steel fiber (SF) wasn't employed in the assembly of the initial concrete series whereas, within the second concrete series, an SF combination was achieved by a constant additional level of 1% by volume. Fresh properties of mixtures were through an experiment investigated in terms of slump flow diameter, T50 slump flow time, V-funnel flow time, and L-box height ratio. Moreover, the mechanical performance of the SCGCs was evaluated in terms of compressive strength, splitting tensile strength, and fracture toughness. Furthermore, a statistical analysis was applied in order to judge the importance of the experimental parameters, like GGBFS and SF contents. The experimental results indicated that the incorporation of SF had no vital impact on the fresh characteristics of the SCGC mixtures whereas GGBFS aggravated them. However, the incorporation of GGBFS was considerably improved the mechanical properties of SCGCs. Moreover, the incorporation of SF with the total different quantity of GGBFS replacement has considerably increased the mechanical properties of SCGCs, by close to (65%) for the splitting strength and (200%) for compressive strength.

Effect of Bonding Process Conditions on the Interfacial Adhesion Energy of Al-Al Direct Bonds (접합 공정 조건이 Al-Al 접합의 계면접착에너지에 미치는 영향)

  • Kim, Jae-Won;Jeong, Myeong-Hyeok;Jang, Eun-Jung;Park, Sung-Cheol;Cakmak, Erkan;Kim, Bi-Oh;Matthias, Thorsten;Kim, Sung-Dong;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.319-325
    • /
    • 2010
  • 3-D IC integration enables the smallest form factor and highest performance due to the shortest and most plentiful interconnects between chips. Direct metal bonding has several advantages over the solder-based bonding, including lower electrical resistivity, better electromigration resistance and more reduced interconnect RC delay, while high process temperature is one of the major bottlenecks of metal direct bonding because it can negatively influence device reliability and manufacturing yield. We performed quantitative analyses of the interfacial properties of Al-Al bonds with varying process parameters, bonding temperature, bonding time, and bonding environment. A 4-point bending method was used to measure the interfacial adhesion energy. The quantitative interfacial adhesion energy measured by a 4-point bending test shows 1.33, 2.25, and $6.44\;J/m^2$ for 400, 450, and $500^{\circ}C$, respectively, in a $N_2$ atmosphere. Increasing the bonding time from 1 to 4 hrs enhanced the interfacial fracture toughness while the effects of forming gas were negligible, which were correlated to the bonding interface analysis results. XPS depth analysis results on the delaminated interfaces showed that the relative area fraction of aluminum oxide to the pure aluminum phase near the bonding surfaces match well the variations of interfacial adhesion energies with bonding process conditions.

Development of the Advanced NDI Technique Using an Alternating Current : the Evaluation of surface crack and blind surface crack and the detection of defects in a field component (교류전류를 이용한 새로운 비파괴탐상법의 개발;표면결함과 이면결함의 평가 및 실기 부재의 결함 검출)

  • Kim. H.;Lim, J.K.
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.42-52
    • /
    • 1995
  • In the evaluation of aging degradation on the structural materials based on the fracture mechanics, the detection and size prediction of defect are very important. Aiming at nondestructive detection and size prediction ol defect with high accuracy and resolution, therefore, an lnduced Current Focusing Potential Drop(ICFPD) technique has been developed. The principle of this technique is to induce a focusing current at an exploratory region by an induction wire flowing an alternating current(AC) that is a constant ampere and frequency. Defects are assessed with the potential drops that are measured the induced current on the surface of metallic material by the potential pick-up pins. In this study, the lCFPD technique was applied for evaluating the location and size of the surface crack and blind crack made in plate specimens, and also for detecting the defects existing in valve, a field component, that were developed by SCC etc. during the service. The results of this present study show that surface crack and blind crack are able to defect with potential drop. these cracks are distinguished with the distribution of potential drop, and the crack depths can be estimated with each normalized potential drop that are parameters estimating the depth of each type crack. In the field component, the defects estimated by experiment result correspond with those in the cutting face of the measuring point within a higher sensitivity.

  • PDF

Effect of Specimen Sizes and Shapes on Compressive Strength of Concrete (콘크리트의 압축강도에 공시체의 크기와 형상이 미치는 영향)

  • Yang Eun-Ik;Choi Joong-Cheol;Yi Seong-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.375-382
    • /
    • 2004
  • The compressive strength of concrete is used as the most basic and important material Property when reinforced concrete structures are designed. It has become a problem to use this value, however, because the control specimen sizes and shapes are different from every country. In this study, the effect of specimen sizes and shapes on compressive strength of concrete specimens was experimentally investigated based on fracture mechanics. Experiments for the Mode I failure was carried out by using cylinder, cube, and prism specimens. The test results are curve fitted using least square method(LSM) to obtain the new parameters for the modified size effect law(MSEL). The analysis results show that the effect of specimen sizes and shapes on ultimate strength is apparent. In addition, correlations between compressive strengths with size, shape, and casting direction of the specimen are investigated. For cubes and prisms the effect of placing direction on the compressive strength was investigated.

Bond Behavior between Near-Surface-Mounted Fiber Reinforced Polymer Plates and Concrete in Structural Strengthening (표면매입보강방법으로 콘크리트내에 매입된 FRP판과 콘크리트 사이의 부착거동)

  • Seo, Soo-Yeon;Yoon, Seoung-Jo;Kwon, Yeong-Soon;Choi, Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.675-682
    • /
    • 2011
  • Recently, in retrofit of RC structures using FRP (Fiber Reinforced Polymer), researches about Near-Surface-Mounted Rertofit (NSMR) method have been widely performed. In NSMR, FRP bar is normally inserted in the slit formed in the cover concrete and then bonded by using epoxy mortar. In this paper, the bond characteristic of NSMR using FRP plate instead of bar was studied experimentally. Fracture behavior is observed from bond test using the parameters of embedment length, shear key, and FRP plate layer. In addition, an equation to predict the splitting strength of NSMR using FRP is proposed using the test result. The results showed that when the longer embedment length and more layers of FRP are used, the higher bond strength is achieved. There was a good co-relationship between the test and calculated results using the proposed equation.

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.9-20
    • /
    • 2000
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

Performance Evaluation of PAN Nanofiber Air Filter Fabricated by Electrospinning (전기방사에 의해 제조한 PAN 나노섬유 공기필터 성능평가)

  • Kim, Kyungcheol;Kim, Taeeun;Lee, JungKoo;Ahn, Jiwoong;Park, Sungho;Kim, Hyungman
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.885-890
    • /
    • 2015
  • Nanomaterials possess unique mechanical, physical, and chemical properties. They are small, and have an ultrahigh surface area, making them suitable for air filter applications. Electrospinning has been recognized as an efficient technique for fabricating polymer nanofibers. In order to determine the optimum manufacturing conditions, the effects of several electrospinning process parameters on the diameter, orientation, and distribution of polyacrylonitrile (PAN) nanofiber are analyzed. To improve interlaminar fracture toughness and suppress delamination in the form of laminated non-woven fibers by using a heat roller, the performances of filter efficiency and pressure drop achieved with PAN nanofiber air filter are evaluated experimentally.

Study of Ultrasound Imaging Technique for Diagnosing Osteoporosis (골다공증 진단을 위한 초음파 영상화 진단 기법 연구)

  • Kim, H.J.;Han, S.M.;Lee, J.H.;Lee, M.R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.386-392
    • /
    • 2002
  • Ultrasonic has been proposed as an attractive means of detecting bone loss. There have been several commercial ultrasound devices developed for measuring the heel to predict fracture at other bones. However, these devices select only single point of heel bone as measurement site. It causes poor assessment of bone quality due to the error of transducer positioning. In an effort to improve current ultrasound systems, we evaluated the linear scanning method which provides better prediction of bone quality and an accurate image of bone shape. The system used in this study biaxially scans a heel bone using automated linear scanning technique. The results demonstrated that the values of ultrasound parameters varied with different positions within bone specimen. It has been also found that the linear scanning method could better pre야ct bone quality, eliminating the error of transducer positioning.

Comparison between Intramedullary Nailing and Percutaneous K-Wire Fixation for Fractures in the Distal Third of the Metacarpal Bone

  • Moon, Sung Jun;Yang, Jae-Won;Roh, Si Young;Lee, Dong Chul;Kim, Jin Soo
    • Archives of Plastic Surgery
    • /
    • v.41 no.6
    • /
    • pp.768-772
    • /
    • 2014
  • Background To compare clinical and radiographic outcomes between intramedullary nail fixation and percutaneous K-wire fixation for fractures in the distal third portion of the metacarpal bone. Methods A single-institutional retrospective review identified 41 consecutive cases of metacarpal fractures between September 2009 and August 2013. Each of the cases met the inclusion criteria for closed, extra-articular fractures of the distal third of the metacarpal bone. The patients were divided by the method of fixation (intramedullary nailing or K-wire). Outcomes were compared for mean and median total active motion of the digit, radiographic parameters, and period until return to work. Complications and symptoms were determined by a questionnaire. Results During the period under review, 41 patients met the inclusion criteria, and the fractures were managed with either intramedullary nailing (n=19) or percutaneous K-wire fixation (n=22). The mean and median total active range of motion and radiographic healing showed no statistically significant difference between the two groups. No union failures were observed in either group. The mean operation time was shorter by an average of 14 minutes for the percutaneous K-wire fixation group. However, the intramedullary nailing group returned to work earlier by an average of 2.3 weeks. Complications were reported only in the K-wire fixation group. Conclusions Intramedullary nailing fixation is advisable for fractures in the distal third of the metacarpal bone. It provides early recovery of the range of motion, an earlier return to work, and lower complication rates, despite potentially requiring a wire removal procedure at the patient's request.