• Title/Summary/Keyword: fracture parameters

Search Result 793, Processing Time 0.024 seconds

Critical thrust force and feed rate determination in drilling of GFRP laminate with backup plate

  • Heidary, Hossein;Mehrpouya, Mohammad A.;Saghafi, Hamed;Minak, Giangiacomo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.631-640
    • /
    • 2020
  • Using backup plate is one of the most commonly used methods to decrease drilling-induced delamination of composite laminates. It has been shown that, the size of the delamination zone is related to the vertical element of cutting force named as thrust force. Also, direct control of thrust force is not a routine task, because, it depends on both drilling parameters and mechanical properties of the composite laminate. In this research, critical feed rate and thrust force are predicted analytically for delamination initiation in drilling of composite laminates with backup plate. Three common theories, linear elastic fracture mechanics, classical laminated plate and mechanics of oblique cutting, are used to model the problem. Based on the proposed analytical model, the effect of drill radius, chisel edge size, and backup plate size on the critical thrust force and feed rate are investigated. Experimental tests were carried out to prove analytical model.

Mechanical Properties of the Flash Butt Welded Joint of 590MPa High Strength Steel (590MPa급 고강도강 플래시버트 용접이음부의 기계적특성)

  • Jeong, Bo-Young;Woo, In-Su;Kim, Jeong-Kil;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.55-61
    • /
    • 2007
  • Flash butt weldability of 590MPa dual phase steel is carried out under micro metallographical examination and macro mechanical property tests. The objective of present study is to investigate the cause that brings on bond line fracture, and is to improve mechanical properties of the flash butt welded joint. The joint of flash butt welding has a superior tensile property, but has bad formability due to oxide formed at bond interface. The HAZ softening in the weld joint does not show. It was found that mechanical properties were increased with optimizing welding parameters and making application of oil dripping and post-weld heat treatment.

The Influence of Diamond Abrasive Size on the Life of Tungsten Carbide Wet Drawing Dies (다이아몬드 연마재 입도가 초경 습식신선 다이스 수명에 미치는 영향)

  • Lee, S.K.;Kim, M.A.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.518-523
    • /
    • 2006
  • Wet wire drawing of brass coated steel wire, used for tire reinforcement, is realized with Tungsten Carbide(WC) dies sintered with a cobalt(Co) binder. Dies wear represents an important limitation to the production process and cost savings. Several parameters, such as Co content, WC grain size of tungsten carbide, sintering conditions, and so on, affect on the wear of the drawing die. In this study, the effect of the diamond abrasive particle size on the life of the WC centered dies of the wet wire drawing was investigated. Wet wire drawing experiments were carried out on a wet wire drawing machine. From the experiments, the dies life, dies fracture, wire surface roughness, and wire breaks were investigated. From the results, it was found that the wear of the WC dies increased with the increase in the diamond abrasive particle size.

Biomechanical Finite Element Analysis of Bone Cemented Hip Crack Initiation According to Stem Design

  • Kim, Byeong-Soo;Moon, Byung-Young;Park, Jung-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2168-2177
    • /
    • 2006
  • The purpose of this investigation was to determine the specific fracture mechanics response of cracks that initiate at the stem-cement interface and propagate into the cement mantle. Two-dimensional finite element models of idealized stem-cement-bone cross-sections from the proximal femur were developed for this study. Two general stem types were considered; Rectangular shape and Charnley type stem designs. The FE results showed that the highest principal stress in the cement mantle for each case occurred in the upper left and lower right regions adjacent to the stem-cement interface. There was also a general decrease in maximum tensile stress with increasing cement mantle thickness for both Rectangular and Charnley-type stem designs. The cement thickness is found to be one of the important fatigue failure parameters which affect the longevity of cemented femoral components, in which the thinner cement was significantly associated with early mechanical failure for shot-time period.

Creep Behaviours of Duplex Stainless Steel (2상 스테인리스강(STS 329J1)의 크리프 특성)

  • Hwang Kyung Choong;Kwon Jong Wan;Yoon Jong Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.42-47
    • /
    • 2005
  • Micro duplex stainless steel is used to denote a fine scale two-phase micro structure consisting austenite and firrite. The development of this structure was done by proper thermo-mechanical processing. The objective of present investigation is to study creep characteristics of this alloy. Since we have little design data about the W behaviors of the alloy. An apparatus has been designed and built fir conducting creep tests under constant load conditions. A series of creep tests on them have been performed to get the basic design data and life prediction of micro duplex stainless steel products and we have gotten the 1311owing results. First the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy Gradually decreases as the stresses become higher. Thirdly, the constant of Larson-Miller Parameters on this alloy is estimated as about 5. Last, the fiactographs at the creep rupture show both the ductile and brittle fracture modes according to the creep conditions.

Study on the Failure Criterion for Finite Element Analysis of Precise Shearing (정밀전단시의 유한요소 해석을 위한 파단기준 연구)

  • 강대철
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.80-86
    • /
    • 2000
  • The Tailor Welded Blanks(TWB) are using various materials (different thickness, strength and different materials) can be welded together prior to the forming process. Therefore, TWB applications have become little by little important in automobile industries, because it has more light weight and process reduction. A burnish area is very important for TWB using laser welding. In this paper, evaluated failure criterion, effect of clearance and distance of between pad and punch by computer simulation. We used element separation method for fracture. And applied a plastic strain to failure criterion. According to the analysis results, we obtain failure criterion, when plastic strain is 2.0. The burnish area and clearance were inverse proportional.

  • PDF

Weldability of 12% Cr steel by thermally simulated HAZ (열 영향부의 시물레이션에 의한 12% Cr강의 용접성 평가)

  • 김재도
    • Journal of Welding and Joining
    • /
    • v.4 no.2
    • /
    • pp.40-46
    • /
    • 1986
  • This investigation is concerned with the toughness and microstructure of manneristically simulated HAZ in 12% Cr steel. Unnotched specimens were subjected to weld thermal cycles a weld simulator. The parameters-peak temperatures, cooling rate, influence of PWHT and plastic deformation were considered. After weld simulation, the specimens were heat-treated, V-notched and impact tested. An optical metallographic examination was performed to correlate the HAZ toughness with microstructure. Also a fractographic examination was done to obtain information on the fracture mode. The toughness of the coarse grained zone and the part of HAZ subjected to a peak temperature range 700-800.deg. C are lower than the other parts. However, they are still high enough. The double PWHT cycle could not improve the HAZ toughness in present study. However, if the first PWHT is conducted before the work piece is cooled below $M_f$, it is expected that the double PWHA may be beneficial to the toughness of the HAZ. It is also expected that martensitic welding can be used on production welds.

  • PDF

Stress Intensity Factors of Combined Mode(Mode I/II) Crack in a Variable Thickness Plate (두께가 변화하는 부재 내의 혼합모드(모드 I/II) 균열의 응력확대계수)

  • 조명래;양원호;최용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1875-1882
    • /
    • 1993
  • Variable thickness plates are commonly used as structural members in the majority of industrial sectors. Previous fracture mechanics researches on variable thickness plates were limited to mode I loading cases. In practice, however, cracks are usually located inclined to the loading direction. In this respect, combined mode(mode I/II) stress intensity factors $K_{I}$ and $K_{II}$ at the crack tip for a variable thickness plate were obtained by 3-dimensional finite element analysis. Variable thickness plates containing a slant edge crack were chosen. The parameters used in this study were dimensionless crack $length{\lambda}$, slant $angle{\alpha}$, thickness $ratio{\beta}$ and width ratio{\omega}$. Stress intensity factors were calculated by crack opening displacement(COD) and crack sliding displacement(CSD)method proposed by Ingraffea and Manu.

Creep Behaviours of Inconel 690 Alloy (인코넬 690 합금의 크리프거동)

  • 황경충;윤종호;최재하;김성청
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.54-61
    • /
    • 2002
  • Inconel 690 alloy has widely been used in power plant and high temperature facilities because it has high thermal resistance and toughness. But we have little design data about the creep behaviors of the alloy. Therefore, in this study, an apparatus has been designed and built for conducting creep tests under constant load conditions. A series of creep tests on Inconel 690 alloy have been performed to get the basic design data and life prediction of inconel products and we have gotten the following results. First, the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy gradually decreases as the stresses become bigger. thirdly, the constant of Larson-Miller Parameters on this alloy is estimated about 10. And last the fractographs at the creep rupture show both the ductile and the brittle fracture according to the creep conditions.

The Characteristics of Bonding for Thermo-plastic using Solar Energy (태양에너지를 이용한 열경화성 플라스틱 접합특성)

  • Kim, Ok-Sam;Kim, Il-Soo;Son, Joon-Sik;Seo, Joo-Hwan;Moon, Chae-Joo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.106-111
    • /
    • 2007
  • In this research work attempts were made to study the bonding of thermo-plastics with adhesives using solar radiation. In order to study the curing behaviour necessary experiments were conducted under varying conditions of temperature, exposure time and power of solar energy. The cured samples were then studied under the optical microscope before subjecting to tensile testing in order to study their mechanical properties of thermo-plastics. The fracture surfaces were further studied under the Scanning Electron Microscopy(SEM) in order to research the microstructural changes that are taken place during curing. In order to measure the performance of solar energy cured joints the parameters such as; bond strength, surface morphology, the microstructual changes, variation in properties of adhesives bonded joints are compared to that of specimen cured at ambient conditions and specimen cured using microwave techniques.