• Title/Summary/Keyword: fracture network

Search Result 170, Processing Time 0.029 seconds

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie;Zhang, Shuhua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.354-366
    • /
    • 2020
  • This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.

Multiphase flow analysis in rock fractures with dynamic MMIP model

  • 지성훈;여인욱;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.32-35
    • /
    • 2002
  • In order to characterize the migration of DNAPL in rock fractures, the dynamic macromodified invasion percolation (DMMIP) model, that is able to reflect the viscous force of groundwater in a fracture network, is suggested. DMMIP simulations are verified against the laboratory expenments, which shows a good qualitative and quantitative agreement.

  • PDF

A Study on the Quantified Criteria in Determining the Geostructural Domain of Fractured Rock Mass (절리암반내 지구조구 설정을 위한 정량적 기준에 대한 연구)

  • Um Jeong-Gi;Cho Taechin;Kwon Soon Jin
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.26-37
    • /
    • 2006
  • This study addresses the applicability of box fractal dimension, $D_B$, as an index of statistical homogeneity of fractured rock mass. The box-count method's capability in quantifying the combined effect of fracture density and size distribution is examined systematically. Total of 129 two-dimensional fracture configurations were generated based on different combinations of fracture size distribution and fracture density. $D_B$was calculated for the generated fracture network systems using the box-counting method. It was found that was standard deviation of trace length and fracture orientation have no effect on calculated $D_B$. The estimated $D_B$ was found to increase with increasing total density and/or mean trace length. To explore the field applicability of this study, the statistical homogeneity of fractured rock mass was investigated at the rock slope and the underground facility using the box-counting method as well as conventional contingency table analysis. The results obtained in this study clearly show that the methodologies given in this paper have the capability of determining the statistical homogeneity of fractured rock mass.

Geometric Analysis of Fracture System and Suggestion of a Modified RMR on Volcanic Rocks in the Vicinity of Ilgwang Fault (일광단층 인근 화산암 암반사면의 단열계 기하 분석 및 암반 분류 수정안 제시)

  • Chang, Tae-Woo;Lee, Hyeon-Woo;Chae, Byung-Gon;Seo, Yong-Seok;Cho, Yong-Chan
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.483-494
    • /
    • 2007
  • The properties of fracture system on road-cut slopes along the Busan-Ulsan express way under construction are investigated and analyzed. Fracture spacing distributions show log-normal form with extension fractures and negative exponential form with shear fractures. Straight line segments in log-log plots of cumulative fracture length indicate a power-law scaling with exponents of -1.13 in site 1, -1.01 in site 2 and -1.52 in site 3. It is likely that the stability and strength of rock mass are the lowest in site 1 as judged from the analyses of spacing, density and inter-section of fractures in three sites. In contrast, the highest efficiency of the fracture network for conducting fluid flow is seen in site 3 where the largest cluster occupies 73% through the window map. Based on the field survey data, this study modified weighting values of the RMR system using a multiple regression analysis method. The analysis result suggests a modified weighting values of the RMR parameters as follows; 18 for the intact strength of rock; 61 for RQD; 2 for spacing of discontinuities; 2 for the condition of discontinuities; and 17 for ground water.

An analysis method Flexural Crack Propagation Behavior of Concrete with Aggregate Distribution of Section (단면의 골재분포를 고려한 콘크리트의 휨균열 진전 거동해석기법)

  • Chae, Young-Suk;Song, Kwan-Kwon;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.57-63
    • /
    • 2013
  • This paper discusses 2D models of beams for simulating the fracture of brittle materials. A simulation of an experiment on a concrete beam subjected to bending, in which two overlapping cracks occur, is used to study the effect of individual beam characteristics and different arrangements of the beams in the overall network mesh. It was found that any regular orientation of the beams influences the resulting crack patterns. Methods to implement a wide range of poisson's ratios are also developed, the use of the mesh to study arbitrary micro-structures is outlined. The crack pattern that are obtained with mesh are in good agreement with the experimental results. Also, numerical simulations of the tests were performed by means of a model, and non-integer dimensions were measured on the predicted mesh damage patterns.

Torsional Stress Prediction of Turbine Rotor Train Using Stress Model (스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측)

  • Lee, Hyuk-Soon;Yoo, Seong-Yeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.850-856
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

Torsional stress prediction of turbine rotor train using stress model (스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측)

  • Lee, Hyuk-Soon;Yoo, Seong-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.862-867
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

  • PDF

Experimental study on the mechanical property of coal and its application

  • Jiang, Ting T.;Zhang, Jian H.;Huang, Gang;Song, Shao X.;Wu, Hao
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Brazilian splitting tests, uniaxial compression tests and triaxial compression tests are carried out on the coal samples cored from Shanxi group $II_1$ coal seam of Jiaozuo coal mine, Henan province, China, to obtain their property parameters. Considering the bedding has notable effect on the property parameter of coal, the samples with different bedding angles are prepared. The effects of bedding on the anisotropic characteristics of the coal seam are investigated. A geological geomechanical model is built based on the geology characteristics of the Jiaozuo coal mine target reservoir to study the effects of bedding on the fracture propagations during hydraulic fracturing. The effects of injection pressure, well completion method, in-situ stress difference coefficient, and fracturing fluid displacement on the fracture propagations are investigated. Results show bedding has notable effects on the property parameters of coal, which is the key factor affecting the anisotropy of coal. The hydraulic cracks trends to bifurcate and swerve at the bedding due to its low strength. Induced fractures are produced easily at the locations around the bedding. The bedding is beneficial to form a complicated fracture network. Experimental and numerical simulations can help to understand the effects of bedding on hydraulic fracturing in coalbed methane reservoirs.

A Study on a large-scale materials simulation using a PC networked cluster (PC Network Cluster를 사용한 대규모 재료 시뮬레이션에 관한 연구)

  • Choi, Deok-Kee;Ryu, Han-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.15-23
    • /
    • 2002
  • For molecular dynamics requires high-performance computers or supercomputers to handle huge amount of computation, it is not until recent days that the application of molecular dynamics to materials fracture simulations draw some attention from many researchers. With the recent advent of high-performance computers, computation intensive methods become more tractable than ever. However, carrying out materials simulation on high-performance computers costs too much in general. In this study, a PC cluster consisting of multiple commodity PCs is established and computer simulations of materials with cracks are carried out on it via molecular dynamics technique. The effect of the number of nodes, speedup factors, and communication time between nodes are measured to verify the performance of the PC cluster. Upon using the PC cluster, materials fracture simulations with more than 50,000 molecules are carried out successfully.

Effect of the type of resin cement on the fracture resistance of chairside CAD-CAM materials after aging

  • Laura Vitoria Rizzatto;Daniel Meneghetti;Marielle Di Domenico;Julia Cadorin Facenda;Katia Raquel Weber;Pedro Henrique Corazza;Marcia Borba
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.3
    • /
    • pp.136-144
    • /
    • 2023
  • PURPOSE. The study objective was to evaluate the influence of the type of resin cement on the flexural strength and load to fracture of two chairside CADCAM materials after aging. MATERIALS AND METHODS. A polymer-infiltrated ceramic network (PICN) and a nanoceramic resin (RNC) were used to produce the specimens. Two types of dual-cure resin cements, a self-adhesive and a universal, were investigated. Bilayer specimens were produced (n = 10) and aged for 6 months in a humid environment before the biaxial flexural strength test (σf). Bonded specimens were subjected to a mechanical aging protocol (50 N, 2 Hz, 37℃ water, 500,000 cycles) before the compressive load test (Lf). σf and Lf data were analyzed using two-way ANOVA and Tukey tests (α = .05). Chi-square test was used to analyze the relationship between failure mode and experimental group (α = .05). RESULTS. The type of resin cement and the interaction between factors had no effect on the σf and Lf of the specimens, while the type of restorative material was significant. RNC had higher σf and Lf than PICN. There was a significant association among the type of cracks identified for specimens tested in Lf and the restorative material. CONCLUSION. The type of resin cement had no effect on the flexural strength and load to fracture of the two investigated CAD-CAM chairside materials after aging.