• 제목/요약/키워드: fracture mechanism

검색결과 703건 처리시간 0.024초

피로하중을 받는 터빈 블레이드의 X선의 프랙토그래피에 관한 연구 (A Study on the X-Ray Fractography of Turbine Blade under Fatigue Load)

  • 김성웅;이동우;홍순혁;조석수;주원식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.778-783
    • /
    • 2001
  • Turbine blade is subject to cyclic bending force by steam pressure. Stress analysis by fractography is already established technology as means for seeking cause of fracture and has been widely employed. In the X-ray fractography, plastic deformation and residual stress near the fracture surface can by determined and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear power plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined and then the load applied to actual broken turbine blade was predicted.

  • PDF

연속체요소 및 손상이론을 이용한 고강도강 차량부품의 변형기구와 파단 예측 (Prediction of Deformation Mechanism and Fracture for an Auto-Part with Advanced High Strength Steel using Solid Element and Damage Theory)

  • 곽종환;윤석주;김세호;박종규;한홍근
    • 소성∙가공
    • /
    • 제26권5호
    • /
    • pp.293-299
    • /
    • 2017
  • In this paper, finite element stamping analysis was carried out for the front lower arm to examine the applicability of solid element with damage theory to predict shear fracture phenomena induced by sheared edge as well as deformation mechanisms. Mechanical properties related to deformation and damage theory were determined from tensile test. Shear fracture was predicted by normalized Cockcroft-Latham model with initial imposition of the damage value along the sheared edge. Simulation results illustrated that the analysis with solid element and damage theory predicted edge profile, strain distribution, and forming load more accurately than the analysis with shell element. Simulation with solid element can also predict the shear fracture more exactly comparing to analysis with shell element and forming limit curve.

Influence of water saturation on fracture toughness in woven natural fiber reinforced composites

  • Kim, Hyo-Jin;Seo, Do-Won
    • Advanced Composite Materials
    • /
    • 제16권2호
    • /
    • pp.83-94
    • /
    • 2007
  • Woven sisal textile fiber reinforced composites were used to evaluate fracture toughness, tensile and three-point bending. The water absorption testing of all specimens was repeated five times in this study. All specimens were immersed in pure water during 9 days at room temperature, and dried in 1 day at $50^{\circ}C$. Two kinds of polymer matrices such as epoxy and vinyl-ester were used. Fractured surfaces were taken to study the failure mechanism and fiber/matrix interfacial adhesion. It is shown that it can be enhanced to improve their mechanical performance to reveal the relationship between fracture toughness and water absorption fatigue according to different polymer matrices. Water uptake of the epoxy composites was found to increase with cycle times. Mechanical properties are dramatically affected by the water absorption cycles. Water-absorbed samples showed poor mechanical properties, such as lower values of maximum strength and extreme elongation. The $K_{IC}$ values demonstrated a decrease in inclination with increasing cyclic times of wetting and drying for the epoxy and vinyl-ester.

A fracture criterion for high-strength steel cracked bars

  • Toribio, J.
    • Structural Engineering and Mechanics
    • /
    • 제14권2호
    • /
    • pp.209-221
    • /
    • 2002
  • In this paper a fracture criterion is proposed for cracked cylindrical samples of high-strength prestressing steels of different yield strength. The surface crack is assumed to be semi-elliptical, a geometry very adequate to model sharp defects produced by any subcritical mechanism of cracking: mechanical fatigue, stress-corrosion cracking, hydrogen embrittlement or corrosion fatigue. Two fracture criteria with different meanings are considered: a global (energetic) criterion based on the energy release rate G, and a local (stress) criterion based on the stress intensity factor $K_I$. The advantages and disadvantages of both criteria for engineering design are discussed in this paper on the basis of many experimental results of fracture tests on cracked wires of high-strength prestressing steels of different yield strength and with different degrees of strength anisotropy.

파괴역학과 굴찰과 발파로 인한 암반 손상영역의 문헌적 고찰 (Literature Review of Fracture Mechanics and Blasting and Excavation Damaged Zone)

  • 양형식;하태욱;김원범;정주환
    • 터널과지하공간
    • /
    • 제16권3호
    • /
    • pp.209-217
    • /
    • 2006
  • 터널의 고속굴진을 위한 굴착 및 발파 손상영역을 평가하기 위하여 암반에 대한 파괴역학적 연구 결과들을 조사하고 고찰하였다. 파괴역학을 이용하여 균열의 발생 기구를 확립하고 손상영역을 평가하며 나아가서 균열을 효과적으로 제어하기 위한 시도들이 이루어지고 있으며 그 적용가능성이 높다고 판단된다.

Evaluation of Fracture Behavior of SA-516 Steel Welds Using Acoustic Emission Analysis

  • Na, Eui-Gyun;Ono, Kanji;Lee, Dong-Whan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.197-204
    • /
    • 2006
  • The purpose of this study is to evaluate the AE characteristics for the basemetal, PWHT (post-weld heat treatment) and weldment specimens of SA-516 steel during fracture testing. Four-point bending and AE tests were conducted simultaneously. AE signals were emitted in the process of plastic deformation. AE signal strength and amplitude of the weldment was the strongest, followed by PWHT specimen and basemetal. More AE signals were emitted from the weldment samples because of the oxides, and discontinuous mechanical properties. AE signal strength and amplitude for the basemetal or PWHT specimen decreased remarkably compared to the weldment because of lower strength. Pre-cracked specimens emitted even lower event counts than the corresponding blunt notched specimens. Dimple fracture from void coalescence mechanism is associated with low-level AE signal strength for the basemetal or PWHT. Tearing mode and dimple formation were shown on the fracture surfaces of the weldment, but only a small fraction produced detectable AE.

Rock fracturing mechanisms around underground openings

  • Shen, Baotang;Barton, Nick
    • Geomechanics and Engineering
    • /
    • 제16권1호
    • /
    • pp.35-47
    • /
    • 2018
  • This paper investigates the mechanisms of tunnel spalling and massive tunnel failures using fracture mechanics principles. The study starts with examining the fracture propagation due to tensile and shear failure mechanisms. It was found that, fundamentally, in rock masses with high compressive stresses, tensile fracture propagation is often a stable process which leads to a gradual failure. Shear fracture propagation tends to be an unstable process. Several real case observations of spalling failures and massive shear failures in boreholes, tunnels and underground roadways are shown in the paper. A number of numerical models were used to investigate the fracture mechanisms and extents in the roof/wall of a deep tunnel and in an underground coal mine roadway. The modelling was done using a unique fracture mechanics code FRACOD which simulates explicitly the fracture initiation and propagation process. The study has demonstrated that both tensile and shear fracturing may occur in the vicinity of an underground opening. Shallow spalling in the tunnel wall is believed to be caused by tensile fracturing from extensional strain although no tensile stress exists there. Massive large scale failure however is most likely to be caused by shear fracturing under high compressive stresses. The observation that tunnel spalling often starts when the hoop stress reaches $0.4^*UCS$ has been explained in this paper by using the extension strain criterion. At this uniaxial compressive stress level, the lateral extensional strain is equivalent to the critical strain under uniaxial tension. Scale effect on UCS commonly believed by many is unlikely the dominant factor in this phenomenon.