• Title/Summary/Keyword: fracture junction

Search Result 70, Processing Time 0.025 seconds

Numerical Analysis of Iceberg Impact Interaction with Ship Stiffened Plates Considering Low-temperature Characteristics of Steel (강재의 저온 특성을 고려한 선체 보강판과 빙하의 충격 상호 작용에 대한 수치 해석)

  • Nam, Woongshik
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.411-420
    • /
    • 2019
  • It is essential to design crashworthy marine structures for operations in Arctic regions, especially ice-covered waters, where the structures must have sufficient capacity to resist iceberg impact. In this study, a numerical analysis of a colliding accident between an iceberg and stiffened plates was carried out employing the commercial finite element code ABAQUS/Explicit. The ice material model developed by Liu et al. (2011) was implemented in the simulations, and its availability was verified by performing some numerical simulations. The influence of the ambient temperature on the structural resistance was evaluated while the local stress, plastic strain, and strain energy density in the structure members were addressed. The present study revealed the risk of fracture in terms of steel embrittlement induced by ambient temperature. As a result, the need to consider the possibility of brittle failure in a plate-stiffener junction during operations in Arctic regions is acknowledged. Further experimental work to understand the structural behavior in a plate-stiffener junction and HAZ is required.

The Analysis of Patterns and Risk Factors of Newly Developed Vertebral Compression Fractures after Percutaneous Vertebroplasty

  • Yoo, Chai Min;Park, Kyung Bum;Hwang, Soo Hyun;Kang, Dong Ho;Jung, Jin Myung;Park, In Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.4
    • /
    • pp.339-345
    • /
    • 2012
  • Objective : The purpose of this study was to investigate the patterns and the risk factors of newly developed vertebral compression fractures (VCFs) after percutaneous vertebroplasty (PVP). Methods : We performed a retrospective review of the 244 patients treated with PVP from September 2006 to February 2011. Among these patients, we selected 49 patients with newly developed VCFs following PVP as the new VCFs group, and the remaining 195 patients as the no VCFs group. The new VCFs group was further divided into 2 groups : an adjacent fractures group and a nonadjacent fractures group. The following data were collected from the groups : age, gender, body weight/height, body mass index (BMI), bone mineral density (BMD) score of the spine and femur, level of initial fracture, restoration rate of anterior/middle vertebral height, and intradiscal cement leakage, volume of polymethylmethacrylate (PMMA). Results : Age, gender, mean body height/weight, mean BMI and volume of PMMA of each of the group are not statistically significantly associated with fractures. In comparison between the new VCFs group and the no VCFs group, lower BMD, intradiscal cement leakage and anterior vertebral height restoration were the significant predictive factors of the fracture. In addition, new VCFs occurrence at the adjacent spines was statistically significant, when the initial fracture levels were confined to the thoracolumbar junction, among the subgroups of new VCFs. Conclusion : Lower spinal BMD, the greater anterior vertebral height restoration rate and intradiscal cement leakage were confirmed as risk factors for newly formed VCFs after PVP.

INFLUENCE OF POST TYPES AND SIZES ON FRACTURE RESISTANCE IN THE IMMATURE TOOTH MODEL (미성숙 치아 모델에서 포스트의 종류와 크기가 치아의 파절 저항성에 미치는 영향에 관한 연구)

  • Kim, Jong-Hyun;Park, Sung-Ho;Park, Jeong-Won;Jung, Il-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.4
    • /
    • pp.257-266
    • /
    • 2010
  • The purpose of this study was to determine the effect of post types and sizes on fracture resistance in immature tooth model with various restorative techniques. Bovine incisors were sectioned 8 mm above and 12 mm below the cementoenamel junction to simulate immature tooth model. To compare various post-and-core restorations, canals were restored with gutta-percha and resin core, or reinforced dentin wall with dual-cured resin composite, followed by placement of D.T. LIGHT-POST, ParaPost XT, and various sizes of EverStick Post individually. All of specimens were stored in the distilled water for 72 hours and underwent 6,000 thermal cycles. After simulation of periodontal ligament structure with polyether impression material, compressive load was applied at 45 degrees to the long axis of the specimen until fracture was occurred. Experimental groups reinforced with post and composite resin were shown significantly higher fracture strength than gutta-percha group without post placement (p < 0.05). Most specimens fractured limited to cervical third of roots. Post types did not influence on fracture resistance and fracture level significantly when cement space was filled with dual-cured resin composite. In addition, no statistically significant differences were seen between customized and standardized glass fiber posts, which cement spaces were filled with resin cement or composite resin individually. Therefore, root reinforcement procedures as above in immature teeth improved fracture resistance regardless of post types and sizes.

AN ANALYSIS OF FAILURE MODE OF TEETH RESTORED WITH FIBER-REINFORCED POSTS UNDER THE CONDITION OF BONY RESORPTION (치주지지가 감소된 상태에서 섬유강화형 포스트로 수복한 치아의 실패양상 분석)

  • Lee Byung-Woo;Yi Yang-Jin;Cho Lee-Ra;Park Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.232-242
    • /
    • 2003
  • Statement of problem : Fiber-reinforced posts have lower modulus of elasticity than titanium post or cast post-core. With this similar elasticity to that of dentin, fiber-reinforced posts have been known to have a tendency to reduce the risk of root fracture. However, there were few studies on the teeth restored with fiber-reinforced posts under the condition of reduced periodontal support. Purpose : The purpose of this study was to evaluate the fracture strength and failure mode of endodontically treated teeth restored with fiber-reinforced posts and titanium posts under the condition of reduced periodontal support. Material and method : Extracted human maxillary incisor roots were divided into 3 groups (group 1 carbon fiber post, group 2 : glass fiber post, and group 3 : titanium alloy post). After coronectomy and endodontic treatment, teeth were restored with each post systems and resin core according to the manufacturer's recommendation. Then, teeth with simulated periodontal ligament were embedded in the acrylic resin blocks at the level of 4 mm below the cemento-enamel junction. Each specimen was exposed to $10^5$ load cycles with average 30 N force in $36.5^{\circ}C$ water using a computer-controlled chewing simulator. Loads were applied at $45^{\circ}$ angle to the long axis of the teeth. After cyclic loading, teeth were subjected a compressive load until failure at a crosshead speed of 0.5 mm/min. Fracture strength (N) and failure mode were examined. The fracture strength was analyzed with one-way ANOVA and the Scheffe adjustment at the 95% significance level. Results and conclusion : The results were as follows. 1. There was no statistically significant difference in the mean fracture strength among the groups (P<.05). 2. Carbon fiber post and glass fiber post group showed less root fracture tendency than control group. 3. All specimens with root fractures showed fracture lines above the level of acrylic resin block, except for only one specimen in group 3.

Fifth Metatarsal Stress Fracture (운동선수의 제5 중족골 피로골절)

  • Lee, Kyung-Tai;Park, Young-Uk;JeGal, Hyuk;Kim, Jun-Beom
    • Journal of Korean Foot and Ankle Society
    • /
    • v.16 no.2
    • /
    • pp.87-93
    • /
    • 2012
  • Fractures located at the metaphyseal/diaphyseal junction at the base of the fifth metatarsal were first described by Sir Robert Jones in 1902. However, ever since, there has been disagreement and debate regarding the diagnosis, classification, pathomechanics, the incidences, and potential causes of delayed unions and nonunions, and the optimal method of treatment. It appears to be widely agreed that proximal fractures of the metaphyseal/diaphyseal region of the fifth metatarsal are prone to delayed union or even nonunion. Several classifications of proximal fifth metatarsal stress fractures have been devised. Torg et al. classified fractures involving the proximal part of the diaphysis of the fifth metatarsal into three types. The Torg classification is a good grading system that can be used to determine the type of surgery needed as well as for the prediction of prognosis. The ''plantar gap'' might add to the decision-making process for surgery and improve the prediction of patient prognosis. In addition, the new classification using 'plantar gap' might be used for classification of fifth metatarsal stress fracture. Fifth metatarsal stress fractures can be treated conservatively or surgically, and excellent results have been reported for surgery with rapid recovery in athletes. Intramedullary screw fixation has become a popular form of fixation for fifth metatarsal stress fractures. Bone grafting presents the problems of a longer recovery time and additional skin incision for harvesting. The modified tension band wiring is an useful and simple option for surgical treatment of challenging fifth metatarsal stress fractures.

Factors in Selection of Surgical Approaches for Lower Lumbar Burst Fractures (하부 요추 방출 골절의 수술방법 결정시 고려 요인들)

  • Jahng, Tae-Ahn;Kim, Jong-Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.8
    • /
    • pp.1055-1062
    • /
    • 2000
  • Objectives : Burst fracture of the lower lumbar spine(L3-L5) is rare and has some different features compare to that of thoracolumbar junction. Lower lumbar spine is flexible segments located deeply, and has physiologic lordosis. All of these contribute to making surgical approach difficult. Generally, lower lumbar burst fracture is managed either anteriorly or posteriorly with various fixation and fusion methods. But there is no general guideline or consensus regarding the proper approach for such lesion. We have tried to find out the influencing factors for selecting the surgical approach through the analysis of lower lumbar burst fractures treated for last 4 years(1994.3-1998.3). Method : This study includes 15 patients(male : 10, female : 5, age range 20-59 years with mean age of 36.7 years, L3 : 8 cases, L4 : 5 cases, L5 : 2 cases). Patients were classified into anterior(AO) and posterior operated(PO) groups. We investigated clinical findings, injured column, operation methods, and changes in follow-up radiologic study (kyphotic angle) to determine the considerable factors in selecting the surgical approaches. Results : There were 5 AO and 10 PO patients. Anterior operation were performed with AIF with Kaneda or Z-plate and posterior operation were done with pedicle screw fixation with PLIF with cages or posterolateral fusion. Canal compression was 46.6% in AO and 38.8% in PO. The degree of kyphotic angle correction were 10.7 degree(AO) and 8.5 degree(PO), respectively. There was no statistical difference between anterior and posterior operation group. All patients showed good surgical outcome without complications. Conclusion : Anterior operation provided good in kyphotic angle correction and firm anterior strut graft, but it difficulty arose in accessing the lesions below L4 vertebra. While posterior approach showed less correction of kyphotic angle, it required less time and provided better results for accompanied adjacent lesion and pathology such as epidural hematoma. The level of injury, canal compression, biomechanics, multiplicity, and pathology are considered to be important factors in selection of the surgical approach.

  • PDF

Effect of titanium and stainless steel posts in detection of vertical root fractures using NewTom VG cone beam computed tomography system

  • Mohammadpour, Mahdis;Bakhshalian, Neema;Shahab, Shahriar;Sadeghi, Shaya;Ataee, Mona;Sarikhani, Soodeh
    • Imaging Science in Dentistry
    • /
    • v.44 no.2
    • /
    • pp.89-94
    • /
    • 2014
  • Purpose: Vertical root fracture (VRF) is a common complication in endodontically treated teeth. Considering the poor prognosis of VRF, a reliable and valid detection method is necessary. Cone beam computed tomography (CBCT) has been reported to be a reliable tool for the detection of VRF; however, the presence of metallic intracanal posts can decrease the diagnostic values of CBCT systems. This study evaluated and compared the effects of intracanal stainless steel or titanium posts on the sensitivity, specificity, and accuracy of VRF detection using a NewTom VG CBCT system. Materials and Methods: Eighty extracted single-rooted teeth were selected and sectioned at the cemento-enamel junction. The roots were divided into two groups of 40. Root fracture was induced in the test group by using an Instron machine, while the control group was kept intact. Roots were randomly embedded in acrylic blocks and radiographed with the NewTom VG, both with titanium and stainless steel posts and also without posts. Sensitivity, specificity, and accuracy values were calculated as compared to the gold standard. Results: The sensitivity, specificity, and accuracy of VRF diagnosis were significantly lower in teeth with stainless steel and titanium posts than in those without posts. Interobserver agreement was the highest in teeth without posts, followed by stainless steel posts, and then titanium posts. Conclusion: Intracanal posts significantly decreased the VRF diagnostic values of CBCT. The stainless steel posts decreased the diagnostic values more than the titanium posts.

Effects of Brazing Current on Mechanical Properties of Gas Metal Arc Brazed Joint of 1000MPa Grade DP Steels (1000MPa급 DP강 MIG 아크 브레이징 접합부의 기계적 성질에 미치는 브레이징 전류의 영향)

  • Cho, Wook-Je;Yoon, Tae-Jin;Kwak, Sung-Yun;Lee, Jae-Hyeong;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • Mechanical properties and hardness distributions in arc brazed joints of Dual phase steel using Cu-Al insert metal were investigated. The maximum tensile shear load was 10.4kN at the highest brazing current. It was about 54% compared to tensile load of base metal. This joint efficiency is higher than that of joint of DP steel using Cu-based filler metals which are Cu-Si, Cu-Sn. Fracture positions can be divided into two types. Crack initiation commonly occurred at three point junction among upper sheet, lower sheet and the fusion zone. However crack propagations were different with increasing the brazing current. In case of the lower current, it instantaneously propagated along with the interface between fusion zone and upper base material. On the other hand, in case of higher current, a crack propagation occurred through fusion zone. When the brazing current is low (60, 70A), the interface shape is flat type. However the interface shape is rough type, when the brazing current is high (80A). It is thought that the interface shapes were the reason why the crack propagations were different with brazing current. The interface was the intermetallic compounds which consisted of $(Fe,Al)_{0.85}Cu_{0.15}$ IMC formed by crystallization at $1200^{\circ}C$during cooling. Therefore the maximum tensile shear load and the fracture behavior were determined by a interface shape and effective sheet thickness of the fracture position.

Early Vertebroplasty versus Delayed Vertebroplasty for Acute Osteoporotic Compression Fracture : Are the Results of the Two Surgical Strategies the Same?

  • Son, Seong;Lee, Sang-Gu;Kim, Woo-Kyung;Park, Chan-Woo;Yoo, Chan-Jong
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.3
    • /
    • pp.211-217
    • /
    • 2014
  • Objective : In Korea, early vertebroplasty (EVP) or delayed vertebroplasty (DVP, which is performed at least 2 weeks after diagnosis) were performed for the treatment of acute osteoporotic compression fracture (OCF) of the spine. The present study compared the outcomes of two surgical strategies for the treatment of single-level acute OCF in the thoracolumbar junction (T12-L2). Methods : From 2004 to 2010, 23 patients were allocated to the EVP group (EVPG) and 27 patients to the DVP group (DVPG). Overall mean age was $68.3{\pm}7.9$ and minimum follow-up period was 1.0 year. Retrospective study of clinical and radiological results was conducted. Results : No significant differences in baseline characteristics were observed between the two groups. As expected, mean duration from onset to vertebroplasty and mean duration of hospital stay were significantly longer in the DVPG ($17.1{\pm}2.1$ and $17.5{\pm}4.2$) than in the EVPG ($3.8{\pm}3.3$ and $10.8{\pm}5.1$, p=0.001). Final clinical outcome including visual analogue scale (VAS), Oswestry Disability Index, and Odom's criteria did not differ between the two groups. However, immediate improvement of the VAS after vertebroplasty was greater in the EVPG ($5.1{\pm}1.3$) than in the DVPG ($4.0{\pm}1.0$, p=0.002). The proportion of cement leakage was lower in the EVPG (30.4%) than in the DVPG (59.3%, p=0.039). In addition, semiquantitative grade of cement interdigitation was significantly more favorable in the EVPG than in the DVPG (p=0.003). Final vertebral body collapse and segmental kyphosis did not differ significantly between the two groups. Conclusion : Our findings suggest that EVP achieves a better immediate surgical effect with more favorable cost-effectiveness.

Microstructure and Mechanical Properties of Infiltrated Zirconia-Mullite Composite (침투된 지르코니아-뮬라이트 복합체의 미세구조 및 기계적 성질)

  • 손영권;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.174-180
    • /
    • 2000
  • Y-TZP/mullite composites were prepared by the infiltration of Y-TZP precursor into partially reaction-sintered mullite. The addition of Y-TZP(~7.2 wt%) increased the bend strength(207 MPa), fracture toughness(4.6MPa.m1/2) and Vickers microhardness(853kg/$\textrm{mm}^2$) of the uninfiltrated mullite sintered at 162$0^{\circ}C$ for 10h by more than 75, 70 and 105%, respectively. Residual alumina-rich glass was observed at a mullite/mullite junction, due to the mullitization reaction of silica melt with crystalline $\alpha$-Al2O3 during a final sintering. Although ZrO2 inclusions improved the final sintered density of mullite they did not effectively prevent its grain growth.

  • PDF