• Title/Summary/Keyword: fracture interaction

Search Result 173, Processing Time 0.021 seconds

Experimental Study on the Shearing and Crushing Characteristics of Subaqueous Gravels in Gravel Bed River (수중 자갈의 전단 및 파쇄 특성에 관한 실험적 연구)

  • Kim, So-Ra;Jeong, Sueng-Won;Lee, Gwang-Soo;Yoo, Dong-Geun
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.164-174
    • /
    • 2021
  • The study examines the shearing and crushing characteristics of land-derived subaqueous granular materials in a gravel-bed river. A series of large-sized ring shear tests were performed to examine the effect of shear time and shear velocity on the shear stress characteristics of aquarium gravels with a 6-mm mean grain size. Three different shear velocities (i.e., 0.01, 0.1, and 1 mm/sec) were applied to measure the shear stress under the drained (long-term shearing) and undrained (short-term shearing) conditions. Different initial shear velocities, i.e., 0.01→0.1→1 mm/sec and 0.1→0.01→1 mm/sec, were considered in this study. The test results show that the grain crushing effect is significant regardless of drainage conditions. The shear stress of coarse-grained materials is influenced by initial shear velocities, regardless of the drainage conditions. In particular, particle breakage increases as grain size increases. The shearing time and initial shear velocity are the primary influencing factors determining the shear stress of gravels. The granular materials may be broken easily into particles through frictional resistance, such as abrasion, interlocking and fracture due to the particle-particle interaction, resulting in the high mobility of granular materials in a subaqueous environment.

Sandstone Diagenesis of the Lower Permian Jangseong Formation, Jangseong Area, Samcheog Coalfield (삼척탄전 장성일대에 분포하는 하부페름기 장성층 사암의 속성작용)

  • 박현미;유인창;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.132-145
    • /
    • 1998
  • The coal-bearing siliciclastic rocks of the Lower Permian Jangseong Formation, Samcheog coalfield, represent a megacyclothem which shows cyclic repetitions of sandstone, shale, coaly shale, and coals. Petrographic, geochemical, and SEM studies for sandstone samples, and XRD analysis for clay minerals were carried out to understand diagenesis in the sandstones of the Jangseong Formation. The Jangseong sandstones are composed of 60% quartz (mainly monocrystalline quartz) and 36% clay matrix and cement with minor amounts of feldspar, lithic fragments and accessory minerals (less than 4%). Jangseong sandstones are classified mostly as quartzwackes and partly as lithic graywackes according to the scheme of Dott(1964). The textural relationships between authigenic minerals and cements in thin sections and SEM photomicrographs suggest the paragenetic sequence as follows; (1) mechanical compaction, (2) cementation by quartz overgrowth, (3) formation of authigenic clay minerals (illite, kaolinite), (4) dissolution of framework grains and development of secondary porosity, and (5) later-stage pore-filling by pyrophyllite. We propose that these diagenetic processes might be due to organic-inorganic interaction between the dominant framework grains and the formation water. The Al, Si ions and organic acid, derived from dewatering of interbedded organic-rich shale and coals, were transported into the Jangseong sandstones. This caused changes in the chemistry of the formation water of the sandstones, and resulted in overgrowth of quartz and precipitation of authigenic clay minerals of kaolinite and illite. The secondary pores, produced during dissolution of clay and framework grains by organic acid and $CO_2$ gas, were conduit for silica-rich solution into the Jangseong sandstones and the influx of silica-rich solution produced the late-stage pyrophyllite after the expanse of kaolinite. The origin of the solution that formed pyrophyllite is not likely to be the organic-rich formation water based on the observation of fracture-filling pyrophyllite in the Jangseong sandstones, but the process of pyrophyllite pore-filling was indirectly related to organic-inorganic interaction.

  • PDF

Deterioration Assessment for Conservation Sciences of the Five Storied Stone Pagoda in the Jeongrimsaji Temple Site, Buyeo, Korea (부여 정림사지 오층석탑의 보존과학적 풍화훼손도 평가)

  • Kim, Yeong-Taek;Lee, Chan-Hee;Lee, Myeong-Seong
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.675-687
    • /
    • 2005
  • The rocks of the five storied stone pagoda in the Jeongrimsaji temple site are 149 materials in total with porphyritic biotite granodiorite. They include pegmatite veinlet, basic xenolith and evenly developed plagioclase porphyry. This stone pagoda has comparably small fracture and cracks which are farmed in the times of rock properties, but surface exfoliation and granular decomposition are in process actively since the rocks are generally weakened from the influence of air contaminants and acid rain. Structural instability of constituting rocks in the 4th roof materials are observed to occur from distortion and tilt. Such instability is judged to threat stability of the upper part of the stone pagoda. Also, chemical weathering is operating even more as the contaminants, ferro-manganese hydroxides eluted from water-rock interaction on the rock surface. Most of the rock surface is covered with yellowish brown, dark black and light gray contaminants, and especially occur in the lower part of the roof rocks on each floor. The roof underpinning rocks are severe in surface pigmentation from manganese hydroxides and light gray contaminants. The surface of rocks lives bacteria. algae, lichen, or moss and diverse productions in colors of light gray, dark Bray and dark green. Grayish white crustose lichen grows thick on the surface with darkly discolored by fungi and algae in the first stage on basement rocks, and weeds grows wild on the upper part of each roof rocks. This stone pagoda must closely observe the movements of the upper part rock materials through minute safety diagnosis and long term monitoring for structural stability. Especially since the surface discoloration of rocks and pigmentation of secondary contaminants are severe, establishment of general restoration and scientific conservation treatment are necessary through more detailed study for this stone pagoda.