• 제목/요약/키워드: fracture intensity factor

검색결과 527건 처리시간 0.022초

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Treatment of Stainless Steel Cladding in Pressurized Thermal Shock Evaluation: Deterministic Analyses

  • Changheui Jang;Jeong, lll-Seok;Hong, Sung-Yull
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.132-144
    • /
    • 2001
  • Fracture mechanics is one of the major areas of the pressurized thermal shock (PTS) evaluation. To evaluate the reactor pressure vessel integrity associated with PTS, PFM methodology demands precise calculation of temperature, stress, and stress intensity factor for the variety of PTS transients. However, the existence of stainless steel cladding, with different thermal, physical, and mechanical property, at the inner surface of reactor pressure vessel complicates the fracture mechanics analysis. In this paper, treatment schemes to evaluate stress and resulting stress intensity factor for RPV with stainless steel clad are introduced. For a reference transient, the effects of clad thermal conductivity and thermal expansion coefficients on deterministic fracture mechanics analysis are examined.

  • PDF

짧은 보 압축 시험법을 이용한 암석의 모드 II 파괴 인성 측정 (Mode II fracture toughness determination of rocks using short beam compression test)

  • 고태영
    • 한국터널지하공간학회 논문집
    • /
    • 제15권6호
    • /
    • pp.547-557
    • /
    • 2013
  • 전단응력에 의한 전단강도 및 모드 II 파괴인성은 이산화탄소 지중저장에서의 덮개암 및 주입층의 안정성 평가에 활용되는 중요한 인자들이다. 본 연구에서는 짧은 보 압축시험을 이용하여 코코니노 사암의 전단강도 및 모드 II 파괴인성을 측정하였다. 측정된 평균 전단강도는 23.53 MPa이며, 모드 II 파괴인성은 1.58 MPa${\surd}$m이다. 응력확대계수(stress intensity factor)는 변위외삽법(displacement extrapolation method)을 이용한 유한요소법으로 결정하였다. 또한 이축응력(biaxial stress)과 수분포화(water saturation)가 모드 II 파괴인성에 미치는 영향을 분석하였다. 그 결과 이축응력이 증가할수록 파괴인성도 증가하였고, 완전포화된 시험편의 파괴인성은 건조상태의 파괴인성보다 대략 11.4% 감소하였다.

초기재령 콘크리트의 파괴 특성 (Fracture Characteristics of Concrete at Early Ages)

  • 이윤;김진근
    • 콘크리트학회논문집
    • /
    • 제14권1호
    • /
    • pp.58-66
    • /
    • 2002
  • 본 연구의 목적은 유효탄성균열모델과 점성균열모델의 개념에 기초한 임계응력확대계수, 임계균열단개구변위와 파괴에너지, 이선형 연화 곡선같은 콘크리트의 파괴특성들을 초기재령 콘크리트에 관해 구명하는 것이다. 이를 위해 모드 I의 파괴를 일으킬 수 있는 쐐기쪼갬시험이 노치가 있는 육각형의 쐐기 시험체에 대하여 수행되었다. 강도와 재령의 변화에 따라 하중-균열입구변위 곡선이 얻어졌으며, 이것은 선형탄성 파괴역학과 유한요소법에 의해 분석되었다. 실험 결과를 분석한 결과, 재령 1일부터 재령 28일까지의 임계응력확대계수와 파괴에너지는 증가하였으며, 임계균열단개구변위는 감소하였다. 또한 수치해석을 통하여 재령 1일부터 재령 28일까지의 이선형 연화 곡선의 네 파라미터를 구할 수 있었다. 이렇게 얻어진 초개재령 콘크리트의 파괴특성치와 이선형 연화 곡선은 초기재령 콘크리트의 파괴 기준과 유한요소해석시의 입력 상수로서 사용될 수 있을 것이다.

비균질재료의 3차원 균열에 대한 응력확대계수 해석 (Stress Intensity factor Analysis for Three-Dimensional Cracks in Inhomogeneous Materials)

  • 김준수;이준성
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.197-203
    • /
    • 2003
  • Accurate stress intensity factor analyses and crack growth rate of surface -cracked components in inhomogeneous materials are needed fur reliable prediction of their fatigue life and fracture strengths. This paper describes an automated stress intensity factor analysis of three-dimensional (3D) cracks in inhomogeneous materials. 3D finite element method (FEM) was used to obtain the stress intensity factor fur subsurface cracks and surface cracks existing in inhomogeneous materials. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze cladding effect of subsurface cracks in inhomogeneous materials. The results were compared with those surface cracks in homogeneous materials. It is clearly demonstrated from these analyses that the stress intensity factors for subsurface cracks are less than those of surface cracks. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

확률 유한요소해석법을 이용한 피로수명 및 강도해석 (Analysis of Fatigue Life and Fracture Toughness Using Probabilistic Finite Element Method)

  • 이현우;오세종
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1448-1454
    • /
    • 1994
  • Data which gathered and used in the field of fatigue and fracture mechanics have a lot of uncertainties. In this case, those uncertainties will make scatter band in evaluation of fatigue life and fracture toughness. Thus, the probabilistic analysis of these data will be needed. For determining the fatigue life in mixed mode, using crack direction law and fatigue crack growth law, the problem is studied as a constrained life minimization. Stress intensity factor(SIF) is computed by approximate solution table(Ewalds/Wanhill 1984) and 0th order PFEM. The variance of fatigue life and SIF are computed by differentiation of tabulated approximate solution and 1st order PFEM. And these are used for criterion of design values, principal parameter determination and modelling. The problem of center cracked plate is solved for checking the PFEM model which is influenced by various parameters like as initial crack length, final crack length, two fatigue parameters in Paris Equation and applied stress.

저속 충격시 PVC/MBS재료의 파괴특성에 관한 연구 (A Study on Fracture Parameters for PVC/MBS Composites under Low Velocity Impact)

  • 최영식;박명균;박세만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.837-840
    • /
    • 2002
  • An analysis method for rubber toughened PVC is suggested to evaluate critical dynamic strain energy release rates($G_c$) from the Charpy impact energy measurements. An instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture energies and maximum critical loads. The dynamic stress intensity factor $K_{Id}$ was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact fur PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.C.

  • PDF

비균질재료의 표면균열에 대한 응력확대계수 해석 (Stress Intensity Factor Analysis for Surface Crack in Inhomogeneous Materials)

  • 김준수;이준성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.816-819
    • /
    • 2002
  • Accurate stress intensity factor analyses and crack growth rate of surface-cracked components in inhomogeneous materials are needed for reliable prediction of their fatigue lift and fracture strengths. This paper describes an automated system for analyzing the stress intensity factors of three-dimensional (3D) cracks in inhomogeneous materials. 3D finite element method (FEM) was used to obtain the stress intensity factor for subsurface cracks and surface cracks existing in inhomogeneous materials. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze cladding effect of subsurface cracks in inhomogeneous materials. The results were compared with those surface cracks in homogeneous materials. It is clearly demonstrated from these analyses that the stress intensity factors for subsurface cracks are less than those of surface cracks.

  • PDF

크립재료의 균열형상 강체함유물에 대한 새로운 파괴역학 매개변수 개발 (Development of new fracture parameter for rigid inclusion with crack shape in creep material)

  • 이강용;김종성
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2165-2171
    • /
    • 1997
  • The analysis model is the infinite power law creep material containing the rigid inclusion with crack shape. The present analysis is performed using the complex pseudo-stress function method. The strain rate intensity factor is developed as new fracture mechanics parameter which represents the stress and strain rate distribution near a crack tip in power law creep material. The strain rate intensity factor is developed in terms of Kolosoff stress functions.

가압열충격을 고려한 원자로 압력용기의 파괴역학적 해석 (Fracture Mechanics Analysis of a Reactor Pressure Vessel Considering Pressurized Thermal Shock)

  • 박재학;박상윤
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.29-38
    • /
    • 2001
  • The purpose of this paper is to evaluate the structural integrity of a reactor pressure vessel subjected to the pressurized thermal shock(PTS) during the transient events, such as main steam line break(MSLB) and small break loss of coolant accident(SBLOCA). For postulated surface or subsurface cracks, variation curves of stress intensity factor are obtained by using the three different methods, including ASME section XI code anlysis, the finite element alternating method and the finite element method. From the stress intensity factor curves, the maximum allowable nil-ductility transition temperatures(RT/NDT/) are determined by the tangent criterion and the maximum criterion for various crack configurations and two initial transient events. As a result of the analysis, it is noted that axial cracks have smaller maximum allowable RT$_{NDT}$ values than same-sized circumferential cracks for both the transient events in the case of the tangent criterion. Axial cracks have smaller RT$_{NDT}$ values than same-sized circumferential cracks for MSLB and circumferential cracks have smaller values than axial cracks for SBLOCA in the case of the maximum criterion.

  • PDF