• Title/Summary/Keyword: fracture failure

Search Result 1,463, Processing Time 0.025 seconds

On the Fracture of Polar Class Vessel Structures Subjected to Lateral Impact Loads (횡충격하중을 받는 빙해선박 구조물의 파단에 관한 연구)

  • Min, Dug-Ki;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.281-286
    • /
    • 2012
  • Single frame structures with notches were fractured by applying drop impact loadings at room temperature and low temperature. Johnson-Cook shear failure model has been employed to simulate the fractured single frame structures. Through several numerical analyses, material constants for Johnson-Cook shear failure model have been found producing the cracks resulted from experiments. Fracture strain-stress triaxiality curves at both room temperature and low temperature are presented based on the extracted material constants. It is expected that the fracture strain-stress triaxiality curves can offer objective fracture criteria for the assessment of structural fractures of polar class vessel structures fabricated from DH36 steels. The fracture experiments of single frame structures revealed that the structure on low temperature condition fractures at much lower strain than that on room temperature condition despite the same stress states at both temperatures. In conclusion, the material properties on low temperature condition are essential to estimate the fracture characteristics of steel structures operated in the Northern Sea Route.

Influence of coarse aggregate properties on specific fracture energy of steel fiber reinforced self compacting concrete

  • Raja Rajeshwari, B.;Sivakumar, M.V.N.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.173-181
    • /
    • 2020
  • Fracture properties of concrete depend on the mix proportions of the ingredients, specimen shape and size, type of testing method used for the evaluation of fracture properties. Aggregates play a key role for changes in the fracture behaviour of concrete as they constitute about 60-75 % of the total volume of the concrete. The present study deals with the effect of size and quantity of coarse aggregate on the fracture behaviour of steel fibre reinforced self compacting concrete (SFRSCC). Lower coarse aggregate and higher fine aggregate content in SCC results in the stronger interfacial transition zone and a weaker stiffness of concrete compared to vibrated concrete. As the fracture properties depend on the aggregates quantity and size particularly in SCC, three nominal sizes (20 mm, 16 mm and 12.5 mm) and three coarse to fine aggregate proportions (50-50, 45-55, 40-60) were chosen as parameters. Wedge Split Test (WST), a stable test method was adopted to arrive the requisite properties. Specimens without and with guide notch were investigated. The results are indicative of increase in fracture energy with increase in coarse aggregate size and quantity. The splitting force was maximum for specimens with 12.5 mm size which is associated with a brittle failure in the pre-ultimate stage followed by a ductile failure due to the presence of steel fibres in the post-peak stage.

A Study on the Impact Fracture Toughness of Epoxy Matrix Composites (에폭시기지 복합재료의 충격파괴인성에 관한 연구)

  • Kim, Jae-Dong;Jeon, Jin-Tak;Koh, Sung-Wi
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.188-197
    • /
    • 1997
  • The fracture toughness of three different kinds of epoxy-matrix composites containing the same volume fraction of reinforcement and the variation of fracture toughness of glass-carbon fiber/epoxy hybrid composites due to the change of test temperature and different glass fiber content were investigated in this study. Glass fiber/epoxy composite provided much higher fracture toughness than that of other composites because of the high strain at failure of glass fiber. Particularly the carbon fiber/epoxy composite exhibited the low fracture toughness caused by the low strain energy absorbing capacity of carbon fiber. And it was found that the strain at failure of reinforcement and interfacial delamination absorbing a significant amount of impact energy played an important role to increase fracture toughness of composites. The fracture toughness of the glass-carbon fiber hybrid composites increased with increasing the glass fiber content and decreased with raising the test temperature. The residual stress arising from the different thermal expansion between the matrix and reinforcement influenced the fracture toughness of composites.

  • PDF

Fracture Morphology of Degraded Historic Silk Fibers Using SEM (SEM을 이용한 출토 견섬유의 손상 형태에 관한 연구)

  • Bae, Soon Wha;Lee, Mee Sik
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.5
    • /
    • pp.667-675
    • /
    • 2013
  • After analyzing excavated $17-18^{th}$ century silk fibers through a scanning electron microscopy, we discovered seven different kinds of fracture morphology. Using Morton & Hearle fiber fracture morphology, we classified the findings into four different categories. Type I is tensile failure resulting from brittle fracture, granular fracture, and ductile fracture. Type II is fatigue failure caused by tensile fatigue, flex fatigue, and axial split (fibrillation). Type III is bacterial deterioration discovered only in excavated artifacts. Type IV is a combination of the three above. Humid underground conditions and the infiltration of bacteria caused the fibers to swell and weaken its interfibrillar cohesion. Fractures occur when drying and processing an excavated artifact that is already in a fragile condition. Therefore, one must minimize damage through a prompt cleaning process and make sure that the least possible force is exerted on the fabric during any treatment for repair and exhibition.

AN ANALYSIS AND MANAGEMENT OF FRACTURED IMPLANTS (파절된 임프란트 고정체의 분석과 처치)

  • Han Chang-Hyun;Kim Sung-Hyun;Hee Seong-Joo;Ku Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.25-36
    • /
    • 2001
  • Among the numerous factors contributing to implant failure, the most common are infection, failure of proper healing and overload. These factors may occur combined. Implant fractures are one of the complications resulting from overload. Implant fracture is not a common feature, but once it occurs it causes very unpleasant circumstances for the patient as well as for the practitioner. Only few studies have been reported regarding this subject. Thus, little is known about its solutions. It is important that analyzing reasons for implant fracture and finding appropriate solutions. Factors leading to implant fracture are design, material defects, nonpassive fit of prosthetic framework and biomechanical overload. Previous studies have reported that implant fractures ares associated with marginal bone loss and occur mostly in the posterior regions and that most patients showing parafunctional habits also have implant fracture. Abutment and gold screw loosening or fracture were also observed in some of the cases previous to implant fracture. Similar observations were seen in our hospital as well. The following cases will present implant fracture cases which have been successfully treated regarding function and biomechanics. This was achieved by means of using increased number of futures, increasing fixture diameter and establishing proper occlusion.

  • PDF

Failure Assessment Diagrams of Semi-Elliptical Surface Crack with Constraint Effect (구속상태를 고려한 반타원 표면균열의 파손평가선도)

  • Seo, Heon;Han, Tae-Su;Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2022-2032
    • /
    • 1999
  • In recent years, the subject of remaining life assessment has drawn considerable attention in the power generation industry. In power generation systems a variety of structural components, such as steam pipes, turbine rotors, and superheater headers, typically operate at high temperatures and high pressures. Thus a life prediction methodology accounting for fracture and rupture is increasingly needed for these components. For accurate failure assessment, in addition to the single parameter such as K or J-integral used in traditional fracture mechanics, the second parameter like T-stress describing the constraint is needed. The most critical defects in such structures are generally found in the form of semi-elliptical surface cracks in the welded piping-joints. In this work, selecting the structures of surface-cracked plate and straight pipe, we first perform line-spring finite element modeling, and accompanying elastic-plastic finite element analyses. We then present a framework for including constraint effects (T-stress effects) in the R6 failure assessment diagram approach for fracture assessment.

Plasticity and Fracture Behaviors of Marine Structural Steel, Part III: Experimental Study on Failure Strain (조선 해양 구조물용 강재의 소성 및 파단 특성 III: 파단 변형률에 관한 실험적 연구)

  • Choung, Joon-Mo;Shim, Chun-Sik;Kim, Kyung-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.53-65
    • /
    • 2011
  • This is the third of several companion papers dealing with the derivation of material constants for ductile failure criteria under hydrostatic stress. It was observed that the ultimate engineering stresses and elongations at fracture from tensile tests for round specimens with various notch radii tended to increase and decrease, respectively, because of the stress triaxiality. The engineering stress curves from tests are compared with numerical simulation results, and it is proved that the curves from the two approaches very closely coincide. Failure strains are obtained from the equivalent plastic strain histories from numerical simulations at the time when the experimental engineering stress drops suddenly. After introducing the new concept of average stress triaxiality and accumulated average strain energy, the material constants of the Johnson-Cook failure criterion for critical energies of 100%, 50%, and 15% are presented. The experimental results obtained for EH-36 steel were in relatively good agreement with the 100% critical energy, whereas the literature states that aluminum fits with a 15% critical energy. Therefore, it is expected that a unified failure criterion for critical energy, which is available for most kinds of ductile materials, can be provided according to the used materials.

Fracture Simulation of UHPFRC Girder with the Interface Type Model (경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석)

  • Guo, Yi-Hong;Han, Sang-Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • This paper deals with the fracture simulation of UHPFRC girder with the interface type model. Based on the existing numerical simulation of quasi-brittle fracture in normal strength concrete, constitutive modeling for UHPFRC I-girder has been improved by including a tensile hardening at the failure surface. The finite element formulation is based on a triangular unit, constructed from constant strain triangles, with nodes along its sides and neither at the vertex nor the center of the unit. Fracture is simulated through a hardening/softening fracture constitutive law in tension, a softening fracture constitutive law in shear as well as in compression at the boundary nodes, with the material within the triangular unit remaining linear elastic. LCP is used to formulate the path-dependent hardening-softening behavior in non-holonomic rate form and a mathematical programming algorithm is employed to solve the LCP. The piece-wise linear inelastic yielding-failure/failure surface is modeled with two compressive caps, two Mohr-Coulomb failure surfaces, a tensile yielding surface and a tensile failure surface. The comparison between test results and numerical results indicates this method effectively simulates the deformation and failure of specimen.

Analytical Study of Net Section Fracture in Special Concentrically Braced Frames (중심가새골조의 순단면 파단에 관한 해석적 연구)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Failure modes result in fracture or tearing, which may cause deterioration of resistance and reduction of inelastic deformation capacity. The potential failure modes for Special Concentrically Braced Frames (SCBFs) include fracture or tearing of the brace, net section fracture of the brace or gusset plate, fracture of the gusset plate welds, shear fracture of the bolts, block shear, excessive bolt bearing deformation, and buckling of the gusset plate. HSS tubular braces are commonly used in SCBFs, and net section fracture of the tubular brace may also occur through the brace net section at the end of the slot cut into the tube to slip over the gusset plate. This failure mode is categorized as a tension failure mode, and may cause dramatic loss of resistance and brittle behavior. Net section reinforcement is required according to AISC design specifications (AISC 2001). In this paper, the need to reinforce the net section area was discussed. Initially, the results of the net section fracture tests done by the University of California in Berkeley were presented with the modeling of these tests using FE models. To investigate the possibility of net section fracture in an actual frame, the slot end hole model was adapted to the frame FE model, and alternate near-fault histories were applied with tension-dominated cycles, since previous analyses showed that loading history was the most critical factor in net section fracture. The need for this reinforcement (cover plate) and the tension-dominated near-fault history were investigated.

Flexural Behavior of Reinforced Concrete Beams Strengthened with Grid-typs Carbon Fiber Plastics (탄소격자섬유로 보강한 철근 콘크리트보의 휨파괴 특성에 관한 연구)

  • 태기호
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.52-59
    • /
    • 2000
  • Flexural fracture characteristics of newly-developed Grid-type carbon fiber plastics in the deteriorated reinforced concrete structures were investigated by the four-points fracture test to verify the strengthening effects in the beam specimens. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly the reasonable area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

  • PDF