• Title/Summary/Keyword: fracture failure

Search Result 1,472, Processing Time 0.03 seconds

Bursting Failure Prediction in Tube Hydroforming Process (튜브 액압성형 공정에서의 터짐 현상 예측)

  • Kim, Jeong;Lei, Liping;Kang, Sung-Jong;Kang, Beom-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.160-169
    • /
    • 2001
  • To predict busting failure in tubular hydroforming, the criteria for ductile fracture proposed by Oyane is combined with the finite element method. From the histories of stress and strain in each element obtained from finite element analysis, the fracture initiation site is predicted by mean of the criterion. The prediction by the ductile fracture criterion is applied to three hydroforming processes such as a tee extrusion, an automobile rear axle housing and lower am. For these products, the ductile fracture integral I is not only affected by the process parameters, but also by preforming processes. All the simulation results show the combination of the finite element analysis and the ductile fracture criteria is useful in the prediction of farming limit in hydroforming processes.

  • PDF

Fracture resistance of endodontically treated canines restored with different sizes of fiber post and all-ceramic crowns

  • Turker, Sebnem Begum;Alkumru, Hasan Necdet;Akalin, Buket
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.158-166
    • /
    • 2016
  • PURPOSE. The aim of this study was to determine the fracture resistance and the mode of fracture of endodontically treated teeth restored with different fiber posts and all-ceramic crowns. MATERIALS AND METHODS. Two glass fiber reinforced post systems in two different sizes and polyethylene fiber ribbon in two different thicknesses (n=10) were used. The specimens, restored with all-ceramic crowns, were subjected to a compressive load (in N) delivered at a 130-degree angle to the long axis until a fracture could be noted. The results were analyzed statistically with a One-Way ANOVA test (P<.05). RESULTS. Statistically significant differences were observed between the mean fracture resistance values of Postec, Snowlight, and Kerr Connect thin specimens (P<.0095). The Postec results (395.70 N) were found to be significantly higher than the others. No statistical difference was observed among the thick specimens (P<.2657). The mean fracture resistance values of the Snowlight thick samples were found to be higher than those of the Snowlight thin samples. The specimens were always fractured around the cemento-enamel junction at the palatinal side. No post fracture was observed for the thin Snowlight and Kerr Connect specimens or for the thick Postec and Kerr Connect specimens. Among the common failure types of the specimens, the worst was observed to be the root fracture failure. The highest post dislodgement failure result (80%) was obtained from the thin Kerr Connect specimen. CONCLUSION. In terms of optimizing fracture resistance, the fiber post size selection should be done according to the forces applied to the restored teeth.

Reliability Analysis for Fracture of Concrete Armour Units (콘크리트 피복재의 단면파괴에 대한 신뢰성 해석)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.86-96
    • /
    • 2003
  • A fracture or breakage of the concrete armor units in the primary cover layer of breakwaters is studied by using the reliability analysis which may be defined as the structural stability. The reliability function can be derived as a function of the angle of rotation that represents the rocking of armor units quantitatively. The relative influences of all of random variables related to the material and geometric properties on the fracture of armor units is analyzed in detail. In addition, the probability of failure for the fracture of individual armor unit can be evaluated as a function of the incident wave height. Finally, Bernoulli random process and the allowable fracture ratio may be introduced together in this paper, by which the probability of failure of a breakwater due to the fracture of armer units can be obtained straightforwardly. It is found that the probability of failure of a breakwater due to the fracture of armor units may be varied with the several allowable fracture ratios. Therefore, it should be necessary to consider the structural stability as well as the hydraulic stability for the design of breakwaters with multi-leg slender concrete armor units of large size under wave action in deep water.

Mechanical Behavior and Numerical Estimation of Fracture Resistance of a SCS6 Fiber Reinforced Reaction Bonded Si$_3$N$_4$ Continuous Fiber Ceramic Composite

  • Kwon, Oh-Heon;Michael G. Jenkins
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1093-1101
    • /
    • 2002
  • Continuous fiber ceramic composites (CFCCs) have advantages over monolithic ceramics : Silicon Nitride composites are not well used for application because of their low fracture toughness and fracture strength, but CFCCs exhibit increased toughness for damage tolerance, and relatively high stiffness in spite of low specific weight. Thus it is important to characterize the fracture resistance and properties of new CFCCs materials. Tensile and flexural tests were carried out for mechanical properties and the fracture resistance behavior of a SCS6 fiber reinforced Si$_3$N$_4$ matrix CFCC was evaluated. The results indicated that CFCC composite exhibit a rising R curve behavior in flexural test. The fracture toughness was about 4.8 MPa$.$m$\^$1/2 , which resulted in a higher value of the fracture toughness because of fiber bridging. Mechanical properties as like the elastic modulus, proportional limit and the ultimate strength in a flexural test are greater than those in a tensile test. Also a numerical modeling of failure process was accomplished for a flexural test. This numerical results provided a good simulation of the cumulative fracture process of the fiber and matrix in CFCCs.

Dynamic Fracture Characteristics and Size-dependence of Fracture Energy of Concrete under Dynamic Loading (동적하중(動的荷重)을 받는 콘크리트의 파괴특성(破壞特性)과 파괴에너지의 크기효과에 관한 연구(硏究))

  • Oh, Byung Hwan;Chung, Chul Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.71-80
    • /
    • 1990
  • The fracture characteristics of concrete under various rates of loading are investigated. The static and dynamic fracture energies of concrete are determined and the size-dependency of fracture energy is clarified from the present study. To this end, a series of experiments were conducted. The maximum failure loads, fracture energies and nominal failure stresses were calculated from those test results. It is found that the fracture energies are increased with the increase of loading rate. The fracture energy values were also greatly influenced with the size of the specimen. The size-dependent prediction eguations for the static and dynamic fracture energies of concrete are proposed in the present study. The present paper provides useful data for the dynamic fracture analysis of concrete structures.

  • PDF

Failure Path of the Brown-oxide-coated Copper-based Leadframe/EMC Interface under Mixed-Mode Loading (혼합하중 조건하에서 갈색산화물이 입혀진 구리계 리드프레임/EMC 계면의 파손경로)

  • 이호영
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.491-499
    • /
    • 2003
  • Copper-based leadframe sheets were oxidized in a hot alkaline solution to form brown-oxide layer on the surface and molded with epoxy molding compound (EMC). The brown-oxide-coated leadframe/EMC joints were machined to form sandwiched double-cantilever beam (SDCB) specimens and sandwiched Brazil-nut (SBN) specimens for the purpose of measuring the fracture toughness of leadframe/EMC interfaces. The SDCB and the SBN specimens were designed to measure the fracture toughness of the leadframe/EMC interfaces under nearly mode-I loading and mixed-mode (mode I + mode II) loading conditions, respectively. Fracture surfaces were analyzed by various equipment such as glancing-angle XRD, SEM, AES, EDS and AFM to elucidate failure path. Results showed that failure occurred irregularly in the SDCB specimens, and oxidation time of 2 minutes divided the types of irregular failures into two classes. The failure in the SBN specimens was quite different from that in the SDCB specimens. The failure path in the SBN specimens was not dependent on the phase angle as well as the distance from tips of pre-cracks.

Fatigue reliability analysis of steel bridge welding member by fracture mechanics method

  • Park, Yeon-Soo;Han, Suk-Yeol;Suh, Byoung-Chul
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.347-359
    • /
    • 2005
  • This paper attempts to develop the analytical model of estimating the fatigue damage using a linear elastic fracture mechanics method. The stress history on a welding member, when a truck passed over a bridge, was defined as a block loading and the crack closure theory was used. These theories explain the influence of a load on a structure. This study undertook an analysis of the stress range frequency considering both dead load stress and crack opening stress. A probability method applied to stress range frequency distribution and the probability distribution parameters of it was obtained by Maximum likelihood Method and Determinant. Monte Carlo Simulation which generates a probability variants (stress range) output failure block loadings. The probability distribution of failure block loadings was acquired by Maximum likelihood Method and Determinant. This can calculate the fatigue reliability preventing the fatigue failure of a welding member. The failure block loading divided by the average daily truck traffic is a predictive remaining life by a day. Fatigue reliability analysis was carried out for the welding member of the bottom flange of a cross beam and the vertical stiffener of a steel box bridge by the proposed model. Results showed that the primary factor effecting failure time was crack opening stress. It was important to decide the crack opening stress for using the proposed model. Also according to the 50% reliability and 90%, 99.9% failure times were indicated.

Impact Behavior of Laminated Composite using Progressive Failure Model (단계적 파괴 모델에 의한 적층 복합재료의 충격거동 해석)

  • 강문수;이경우;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.102-105
    • /
    • 2000
  • Recently, applications of integrated large composite structures have been attempted to many structures of vehicles. To improve the cost performance and reliability of the integrated composite structures, it is necessary to judge structural integrity of the composite structures. For the judgement, we need fracture simulation techniques for composite structures. Many researches oil the fracture simulation method using FEM have been reported by now. Most of the researches carried out simulations considering only matrix cracking and fiber breaking as fracture modes, and did not consider delamination. Several papers have reported the delamination simulation, but all these reports require three-dimensional elements or quasi three- dimensional elements for FEM analysis. Among fracture mechanisms of composite laminates, delamination is the most important factor because it causes stiffness degradation in composite structures. It is known that onset and propagation of delamination are dominated by the strain energy release rate and interfacial moment. In this study, laminated composite has been described by using 3 dimensional finite elements. Then impact behavior of the laminated composite is simulated using FEM(ABAQUS/Explicit) with progressive failure mechanism. These results are compared with experimental results.

  • PDF

Effects of Thinning Length on Failure Mode of Local Wall Thinned Pipe (감육 배관의 손상모드에 미치는 감육부 길이의 영향)

  • Kim, Jin-Weon;Park, Chi-Yong;Lee, Sung-Ho;Kang, Tai-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.357-362
    • /
    • 2001
  • The pipe fracture tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, in order to understand failure behavior of thinned pipe. Pipe specimens were subjected to monotonic bending moment, using 4-points loading system, under internally pressurized condition. From the results of experiment, the failure mode, load carrying capacity, and deformability of local wall thinning pipe were investigated. Failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with length of thinned area was determined by stress type appled to thinning region and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

  • PDF

Generalized fracture toughness for specimens with re-entrant corners: Experiments vs. theoretical predictions

  • Carpinteri, Alberto;Cornetti, Pietro;Pugno, Nicola;Sapora, Alberto;Taylor, David
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.609-620
    • /
    • 2009
  • In this paper the results of a series of experimental tests upon three-point bending specimens made of polystyrene and containing re-entrant corners are firstly described. Tests involved different notch angles, different notch depths and finally different sizes of the samples. All the specimens broke at the defect, as expected because of the material brittleness and, hence, the generalized stress intensity factor was expected to be the governing failure parameter. Recorded failure loads are then compared with the predictions provided by a fracture criterion recently introduced in the framework of Finite Fracture Mechanics: fracture is assumed to propagate by finite steps, whose length is determined by the contemporaneous fulfilment of energy balance and stress requirements. This fracture criterion allows us to achieve the expression of the generalized fracture toughness as a function of the tensile strength, the fracture toughness and the notch opening angle. Comparison between theoretical predictions and experimental data turns out to be more than satisfactory.