• 제목/요약/키워드: fracture Toughness

검색결과 1,708건 처리시간 0.027초

A Study on Local Distribution of Fracture Toughness for Welded Joints of Steel Structure (구조강(構造鋼) 용접부(鎔接部)의 국부인성분포(局部靭性分布)에 관한 연구(研究))

  • Chang, Dong Il;Young, Hwan Sun;Kim, Dong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제4권3호
    • /
    • pp.19-25
    • /
    • 1984
  • In the welded structure, the most dengerous section is welded parts and almost fractures of welded structure occur from welded parts. Accordingly, in other to prevents of fracture, it is important seeking the fracture behavior of welded parts. In this study as basic investigation of fracture behavior of welded parts, it is investigated that local distribution of fracture toughness and effect of multipass electrode welding, also effect of release of residual stress were investigated, as the subjected. material, the used steel having fatigue history and unused steel were selected. As the result of this study, it is dear that the base metal of unused steel and heat affected zone and weld metal are different each other in fracture toughness, and it seems clear that the weld metal may will become source of fracture because of it having the most low fracture toughness. Especially, in the case of crack occur in the used steel, it will be the most brittle section in the structure because of it having low fracture toughness then weld metal. It affirmation that, if welded parts has not flaw, the multi pass electrode welding effective to improve of fracture toughness, also release of residual stress is none effective to improve of fracture toughness in this study.

  • PDF

Mechanical Behavior and Numerical Estimation of Fracture Resistance of a SCS6 Fiber Reinforced Reaction Bonded Si$_3$N$_4$ Continuous Fiber Ceramic Composite

  • Kwon, Oh-Heon;Michael G. Jenkins
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1093-1101
    • /
    • 2002
  • Continuous fiber ceramic composites (CFCCs) have advantages over monolithic ceramics : Silicon Nitride composites are not well used for application because of their low fracture toughness and fracture strength, but CFCCs exhibit increased toughness for damage tolerance, and relatively high stiffness in spite of low specific weight. Thus it is important to characterize the fracture resistance and properties of new CFCCs materials. Tensile and flexural tests were carried out for mechanical properties and the fracture resistance behavior of a SCS6 fiber reinforced Si$_3$N$_4$ matrix CFCC was evaluated. The results indicated that CFCC composite exhibit a rising R curve behavior in flexural test. The fracture toughness was about 4.8 MPa$.$m$\^$1/2 , which resulted in a higher value of the fracture toughness because of fiber bridging. Mechanical properties as like the elastic modulus, proportional limit and the ultimate strength in a flexural test are greater than those in a tensile test. Also a numerical modeling of failure process was accomplished for a flexural test. This numerical results provided a good simulation of the cumulative fracture process of the fiber and matrix in CFCCs.

Characterization of Microstructures and Fracture Toughness of SR Specimen in Granitic Rocks (화강암에서 SR 시편의 파괴인성과 미세구조적인 특징)

  • Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • 제20권3호
    • /
    • pp.217-224
    • /
    • 2010
  • Three relatively homogeneous granitic rocks were studied to investigate the relationship between their microstructural properties and fracture toughness. Fracture toughness and ultrasonic velocity were varied with the orientation of mineral's long axis and microcrack, obtained from optical microscope. The lowest fracture toughness values are obtained, when the fracture propagates parallel to weakness planes which have the orientation of mineral's long axis and microcrack, in other words, when weakness planes develop perpendicular to the direction of tensile stress agrees with that of rift plane. The fracture toughness values, measured with the short rod method, varied from 1.63 to 2.62 MPa $m^{0.5}$, and their values are related with the average grain size and average microcrack length.

Analysis of Cleavage Fracture Toughness of PCVN Specimens Based on a Scaling Model (PCVN 시편 파괴인성의 균열 깊이 영향에 대한 Scaling 모델 해석)

  • Park, Sang-Yun;Lee, Ho-Jin;Lee, Bong-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제33권4호
    • /
    • pp.409-416
    • /
    • 2009
  • Standard procedures for a fracture toughness testing require very severe restrictions for the specimen geometry to eliminate a size effect on the measured properties. Therefore, the used standard fracture toughness data results in the integrity assessment being irrationally conservative. However, a realistic fracture in general structures, such as in nuclear power plants, may develop under the low constraint condition of a large scale yielding with a shallow surface crack. In this paper, cleavage fracture toughness tests have been made on side-grooved PCVN (precracked charpy V-notch) type specimens (10 by 10 by 55 mm) with various crack depths. The constraint effects on the crack depth ratios were evaluated quantitatively by the developed scaling method using the 3-D finite element method. After the fracture toughness correction from scaling model, the statistical size effects were also corrected according to the standard ASTM E 1921 procedure. The results were evaluated through a comparison with the $T_0$ of the standard CT specimen. The corrected $T_0$ for all of the PCVN specimens showed a good agreement to within $5.4^{\circ}C$ regardless of the crack depth, while the averaged PCVN $T_0$ was $13.4^{\circ}C$ higher than the real CT test results.

Measurement of Dynamic Fracture Toughness Using Chevron Notched Ceramic Specimen (세브론노치 세라믹시편을 이용한 동적파괴인성측정)

  • Lee, Yeon-Soo;Lee, Young-Sun;Park, Rae-Seok;Moon, Young-Deuk;Yoon, Hi-Seak
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제18권5호
    • /
    • pp.98-104
    • /
    • 2001
  • A dynamic fracture toughness test method with a chevron notched ceramic specimens is proposed. The notch angles of the chevron specimens were 90, 100$^{\circ}$and 110$^{\circ}$. Finite element analysis(FEA) were done to determine the geometrical properties of chevron-notch specimens according to notch angles. The static fracture toughness of the chevron notched alumina specimen was 3.8MP$\alpha$√m similar to that of the general fracture specimen with a precrack. Dynamic fracture toughness was 4.5 MP$\alpha$√m slightly higher than the static one. These research showed the possibility of the split Hopkinson pressure bar test method using the newly proposed chevron notched specimens to get the dynamic fracture toughness of extremely brittle materials such as ceramics.

  • PDF

A Study on the Impact Fracture Behavior of Side Plate for G/T 35ton Class FRP Vessel (35톤급 FRP선박 외판자재의 충격파괴거동에 관한 연구)

  • Lee, Jin-Jeong
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • 통권25호
    • /
    • pp.64-76
    • /
    • 2008
  • This paper describes the failure mechanism and Charpy impact test of Fiber glass Reinforced Plastic composites which it was actually used for side plate of vessel. There are two examinations. The examination I, the specimens which it given temperature range $-25^{\circ}C$-$50^{\circ}C$ and with different initial notch length did impact test and then it compared impact energy(Uc) and impact fracture toughness(GIC). The examination II, the specimens which it putted into fresh water and sea water for scheduled hours did impact test and it compared impact energy(Uc) and impact fracture toughness(GIC). From examination I, it showed that impact energy(Uc) and impact fracture toughness(GIC) were peak at ambient temperature and decrease as temperature reduced. Fracture toughness(GIC) showed increase as initial notch length reduced. From examination II, impact energy(Uc) and impact fracture toughness(GIC) tended to increase which specimens putted in fresh water compared with sea water and maximum tolerance rate tend to decrease as permeation hours will be long.

  • PDF

Experimental Investigations of Mode I Fracture Toughness of a Hybrid Twill Woven Carbon and Aramid Fabric Composite (하이브리드 능직 탄소-아라미드 섬유 복합재의 모드 I 파괴인성에 대한 실험적 연구)

  • Kwon, Woo Deok;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • 제34권6호
    • /
    • pp.1-6
    • /
    • 2019
  • Carbon fiber has excellent specific strength, corrosion resistance and heat resistance. And p-Aramid fiber has high toughness and heat resistance and high elasticity, and is used in various fields such as industrial protective materials, bulletproof helmets and vests, as well as industrial fields. However, carbon fiber is relatively expensive, and is susceptible to brittle fracture behavior due to its low fracture strain. On the other hand, the aramid fiber tends to decrease in elastic modulus and strength when applied to the epoxy matrix, but it is inexpensive and has higher elongation and fracture toughness than carbon fiber. Thus the twill hybrid carbonaramid fiber reinforced composite laminate composite was investigated for a delamination fracture toughness under Mode I loading by 2 kinds of MBT and MCC deduction. The specimen was fabricated with 20 hybrid fabric plies. The initial crack was made by inserting the teflon tape in the center plane with a0/W=0.5 length. The results show that SERR(Strain Energy Release Rate) as the critical and stable delamination fracture toughness were 0.09 kJ/㎡, 0.386 kJ/㎡ by MBT deduction, and 0.192 kJ/㎡, 0.67 kJ/㎡ by MCC deduction, respectively.

Evaluation of Fracture Toughness by J-A$_2$ Method Considering Size Effect (시편크기의 영향을 고려한 J-A$_2$ 방법에 의한 파괴인성 평가)

  • 이정윤;김영종;김용환;김재훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제17권1호
    • /
    • pp.153-163
    • /
    • 2000
  • The size effect on fracture toughness was investigated by introducing $J-A_2$ theory. For this application,small size specimens were chosen to establish $J-A_2$ assessment curve with FEM analysis. Two-dimensional FEM analysis was conducted with plane strain model using ABAQUS by domain integral method to calculate both crack tip stress and fracture toughness which were used to establish $J-A_2$ curve. The assessment curve predicted the fracture toughness of large specimens very well when compared to the test values. The results showed good prediction for deep crack specimen, though there were acceptable deviations in shallow cracked specimens, presumably caused by constraint effect. When the curve applied to reactor vessel in order to predict end of life fracture toughness with assumption of on-power pressure test condition, it provided the reasonable pressure compared to the existing design value. Better predictions would be possible if more test data were available.

  • PDF

The Influence of CNTs and Lamination Structure on the Intralaminar Fracture of CFRP/GFRP Composites (CFRP/GFRP 복합재료의 층내 파괴에 대한 CNT 및 적층구조의 영향)

  • Kim, Seong Hun;Yun, Yu Seong;Kang, Ji Woong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • 제32권6호
    • /
    • pp.9-15
    • /
    • 2017
  • Recently many researches were conducted on the interlaminar fracture that is a delamination between laminates by using ASTM standardized methods. However the experiment of the intralaminar a fracture is difficulty. In this study, four types of CFRP/GFRP composites with different layer structures were compared to evaluate an intralaminar fracture toughness under the mode I. Also the CNTs were added to the layer for the examination of the fracture toughness improvement. And the characteristics of the crack propagation behaviour was observed using a microscope. The obtained results can be useful for the evaluation of the intralaminar fracture toughness of the CNT reinforced CFRP/GFRP composites.

Estimation of fracture toughness of cast steel container from Charpy impact test data

  • Bellahcenea, Tassadit;Aberkane, Meziane
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.639-648
    • /
    • 2017
  • Fracture energy values KV have been measured on cast steel, used in the container manufacture, by instrumented Charpy impact testing. This material has a large ductility on the upper transition region at $+20^{\circ}C$ and a ductile tearing with an expended plasticity before a brittle fracture on the lower transition region at $-20^{\circ}C$. To assess the fracture toughness of this material we use, the $K_{IC}$-KV correlations to measure the critical stress intensity factor $K_{IC}$ on the lower transition region and the dynamic force - displacement curves to measure the critical fracture toughness $J{\rho}_C$, the essential work of fracture ${\Gamma}_e$ on the upper transition region. It is found, using the $K_{IC}$-KV correlations, that the critical stress intensity factor $K_{IC}$ remains significant, on the lower transition region, which indicating that our testing material preserves his ductility at low temperature and it is apt to be used as a container's material. It is, also, found that the $J_{\rho}-{\rho}$ energetic criterion, used on the upper transition region, gives a good evaluation of the fracture toughness closest to those found in the literature. Finally, we show, by using the ${\Gamma}_e-K_{IC}$ relation, on the lower transition region, that the essential work of fracture is not suitable for the toughness measurement because the strong scatter of the experimental data. To complete this study by a numerical approach we used the ANSYS code to determine the critical fracture toughness $J_{ANSYS}$ on the upper transition region.