• Title/Summary/Keyword: fraction as a ratio

Search Result 826, Processing Time 0.025 seconds

RELATIVE CLASS NUMBER ONE PROBLEM OF REAL QUADRATIC FIELDS AND CONTINUED FRACTION OF $\sqrt{m}$ WITH PERIOD 6

  • Lee, Jun Ho
    • East Asian mathematical journal
    • /
    • v.37 no.5
    • /
    • pp.613-617
    • /
    • 2021
  • Abstract. For a positive square-free integer m, let K = ℚ($\sqrt{m}$) be a real quadratic field. The relative class number Hd(f) of K of discriminant d is the ratio of class numbers 𝒪K and 𝒪f, where 𝒪K is the ring of integers of K and 𝒪f is the order of conductor f given by ℤ + f𝒪K. In 1856, Dirichlet showed that for certain m there exists an infinite number of f such that the relative class number Hd(f) is one. But it remained open as to whether there exists such an f for each m. In this paper, we give a result for existence of real quadratic field ℚ($\sqrt{m}$) with relative class number one where the period of continued fraction expansion of $\sqrt{m}$ is 6.

Effect of Cold Reduction Ratio on Spheroidization Rate of High Carbon Steel Sheet (고탄소강 열연판재의 냉간압하율에 따른 구상화 속도)

  • Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.543-546
    • /
    • 2008
  • In the present study, the effect of cold reduction ratio on the spherodization rate of SK85 high carbon steel sheet was investigated. High carbon steel sheet fabricated by POSCO was soaked at $800^{\circ}C$ for 2 hr in a box furnace and then treated at $570^{\circ}C$ for 5 min in a salt bath furnace followed by water quenching to obtain a fine pearlite structure. Cold rolling was conducted on the sheets of fine pearlite by reduction ratios of 20, 30, and 40 % and heat treatment for spheroidization was carried out at $720^{\circ}C$ for the various time intervals from 0.1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times.

  • PDF

FLUID-ELASTIC INSTABILITY OF ROTATED SQUARE TUBE ARRAY IN AN AIR-WATER TWO-PHASE CROSSFLOW

  • CHUNG HEUNG JUNE;CHU IN-CHEOL
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.69-80
    • /
    • 2006
  • Fluid-elastic instability in an air-water two-phase cross-flow has been experimentally investigated using two different arrays of straight tube bundles: normal square (NS) array and rotated square (RS) array tube bundles with the same pitch-to-diameter ratio of 1.633. Experiments have been performed over wide ranges of mass flux and void fraction. The quantitative tube vibration displacement was measured using a pair of strain gages and the detailed orbit of the tube motion was analyzed from high-speed video recordings. The present study provides the flow pattern, detailed tube vibration response, damping ratio, hydrodynamic mass, and the fluid-elastic instability for each tube bundle. Tube vibration characteristics of the RS array tube bundle in the two-phase flow condition were quite different from those of the NS array tube bundle with respect to the vortex shedding induced vibration and the shape of the oval orbit of the tube motion at the fluid-elastic instability as well as the fluid-elastic instability constant.

The Association between Mortality and the Oxygen Saturation and Fraction of Inhaled Oxygen in Patients Requiring Oxygen Therapy due to COVID-19-Associated Pneumonia

  • Choi, Keum-Ju;Hong, Hyo-Lim;Kim, Eun Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.2
    • /
    • pp.125-133
    • /
    • 2021
  • Background: The coronavirus disease (COVID-19) can manifest in a range of symptoms, including both asymptomatic systems which appear nearly non-existent to the patient, all the way to the development of acute respiratory distress syndrome (ARDS). Specifically, COVID-19-associated pneumonia develops into ARDS due to the rapid progression of hypoxia, and although arterial blood gas analysis can assist in halting this deterioration, the current environment provided by the COVID-19 pandemic, which has led to an overall lack of medical resources or equipment, has made it difficult to administer such tests in a widespread manner. As a result, this study was conducted in order to determine whether the levels of oxygen saturation (SpO2) and the fraction of inhaled oxygen (FiO2) (SF ratio) can also serve as predictors of ARDS and the patient's risk of mortality. Methods: This was a retrospective cohort study conducted from February 2020 to Mary 2020, with the study's subjects consisting of COVID-19 pneumonia patients who had reached a state of deterioration that required the use of oxygen therapy. Of the 100 COVID-19 pneumonia cases, we compared 59 pneumonia patients who required oxygen therapy, divided into ARDS and non-ARDS pneumonia patients who required oxygen, and then investigated the different factors which affected their mortality. Results: At the time of admission, the ratios of SpO2, FiO2, and SF for the ARDS group differed significantly from those of the non-ARDS pneumonia support group who required oxygen (p<0.001). With respect to the predicting of the occurrence of ARDS, the SF ratio on admission and the SF ratio at exacerbation had an area under the curve which measured to be around 85.7% and 88.8% (p<0.001). Multivariate Cox regression analysis identified that the SF ratio at exacerbation (hazard ratio [HR], 0.916; 95% confidence interval [CI], 0.846-0.991; p=0.029) and National Early Warning Score (NEWS) (HR, 1.277; 95% CI, 1.010-1.615; p=0.041) were significant predictors of mortality. Conclusion: The SF ratio on admission and the SF ratio at exacerbation were strong predictors of the occurrence of ARDS, and the SF ratio at exacerbation and NEWS held a significant effect on mortality.

Bending analysis of an imperfect advanced composite plates resting on the elastic foundations

  • Daouadji, Tahar Hassaine;Benferhat, Rabia;Adim, Belkacem
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.269-283
    • /
    • 2016
  • A two new high-order shear deformation theory for bending analysis is presented for a simply supported, functionally graded plate with porosities resting on an elastic foundation. This porosities may possibly occur inside the functionally graded materials (FGMs) during their fabrication, while material properties varying to a simple power-law distribution along the thickness direction. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theories presented are variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. It is established that the volume fraction of porosity significantly affect the mechanical behavior of thick function ally graded plates. The validity of the two new theories is shown by comparing the present results with other higher-order theories. The influence of material parameter, the volume fraction of porosity and the thickness ratio on the behavior mechanical P-FGM plate are represented by numerical examples.

Energy Performance Analysis of Solar Hot Water Heating System used in an Office Building Using the Dynamic Simulation (시뮬레이션을 이용한 사무소건물 적용 태양열 급탕시스템의 에너지성능 분석)

  • Ko, Myeong-Jin;Choi, Doo-Sung;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.281-285
    • /
    • 2009
  • This paper is to simulate a solar hot water heating system used in a medium-scale office building using the dynamic simulation. This study is focused chiefly on the annual variation of energy performance, the solar fraction with respect to the difference of hot water load temperature. For this purpose the simple model of a solar hot water heating system has been considered with TRNSYS program and the simulations were performed with the weather data in Seoul, Korea. The share ratio of solar hot water system of the summer season appeared higher than the winter season because that the decrease of the domestic hot water load was far despite the relative decrease of the solar radiation. As the temperature was lower from $60^{\circ}C$ to $50^{\circ}C$, the solar fraction increases 8.1 percent due to 20-percent decrease of annual hot water load.

  • PDF

Experimental Study on NOx Reduction and CO Emission by Fuel Lean Reburning Process (연료 희박 재연소 과정에 의한 NOx 저감 및 CO 발생에 대한 실험적 연구)

  • Lee, Chang-Yeop;Kim, Hak-Young;Baek, Seung-Wook;Kim, Se-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.216-223
    • /
    • 2008
  • Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on $NO_X/CO$ reduction in LPG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LPG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection location of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the fuel lean reburning system was adapted, it is important that the control of some factors such as initial equivalence ratio, reburn fuel fraction and temperature of reburn fuel injection region. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning.

A Study on Flammable Mixture Formation in a Rectangular Enclosure with Gaseous Fuel Leak from the Bottom (직사각형 밀폐공간내에 기체연료 밑면 누출시 가연성 혼합기 생성에 관한 연구)

  • Chung, N.K.;Kim, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.249-256
    • /
    • 1993
  • Numerical method is applied to predict the time variation behavior of flammable mixture formation in a two dimensional enclosure from the beginning of gas leak. Additionally experimental method is used to consider qualitative aspects. Characteristics of flammable mixture formation such as distribution of flow and fuel mass fraction at various locations in the enclosure are determined for the following parameters: the various locations of leak at the bottom and aspect ratio of the enclosure. In the case of gas leak with small leak velocity from the bottom of enclosure gravitational force affects the formation of flammable mixture. Aspect ratio of the enclosure also affects the formation of flammable mixture. The volume of the region of recirculating flow is dominant factor affecting the formation mixture.

  • PDF

Indeterminate Strut-Tie Model and Load Distribution Ratio of Continuous RC Deep Beams (I) Proposal of Model & Load Distribution Ratio (연속지지 RC 깊은 보의 부정정 스트럿-타이 모델 및 하중분배율 (I) 모델 및 하중분배율의 제안)

  • Kim, Byung-Hun;Chae, Hyun-Soo;Yun, Young-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.3-12
    • /
    • 2011
  • The structural behavior of continuous reinforced concrete deep beams is mainly controlled by the mechanical relationships associated with the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model which reflects characteristics of the complicated structural behavior of the continuous deep beams is presented. In addition, the reaction and load distribution ratios defined as the fraction of load carried by an exterior support of continuous deep beam and the fraction of load transferred by a vertical truss mechanism, respectively, are proposed to help structural designers for the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure a ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and concrete compressive strength are implemented after thorough parametric numerical analyses. In the companion paper, the validity of the presented model and load distribution ratio was examined by applying them in the evaluation of the ultimate strength of multiple continuous reinforced concrete deep beams, which were tested to failure.

The necessary number of profile lines for the analysis of concrete fracture surfaces

  • Konkol, Janusz;Prokopski, Grzegorz
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.565-576
    • /
    • 2007
  • The article describes a technique for the measurement of the level of complexity of fracture surfaces by the method of vertical sections, and a performed statistical analysis of the effect of profile lines on the fractographic and fractal parameters of fractures, i.e. the profile line development factor, $R_L$, and the fracture surface development factor, $R_S$, (as defined by the cycloid method), as well as the fractal dimension, $D_C$, (as determined by the chord method), and the fractal dimension, $D_{BC}$, (as determined by the box method). The above-mentioned parameters were determined for fracture surfaces of basalt and gravel concretes, respectively, which had previously been subjected to fracture toughness tests. The concretes were made from mixtures of a water/cement ratio ranging from 0.41 to 0.61 and with a variable fraction of coarse aggregate to fine aggregate, $C_{agg.}/F_{agg.}$, in the range from 1.5 to 3.5. Basalt and gravel aggregate of a fraction to maximum 16 mm were used to the tests. Based on the performed analysis it has been established that the necessary number of concrete fracture profile lines, which assures the reliability of obtained testing results, should amount to 12.