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RELATIVE CLASS NUMBER ONE PROBLEM OF REAL

QUADRATIC FIELDS AND CONTINUED FRACTION OF
√
m

WITH PERIOD 6

Jun Ho Lee

Abstract. For a positive square-free integer m, let K = Q(
√
m) be a real

quadratic field. The relative class number Hd(f) of K of discriminant d is

the ratio of class numbers OK and Of , where OK is the ring of integers
of K and Of is the order of conductor f given by Z + fOK . In 1856,

Dirichlet showed that for certain m there exists an infinite number of f
such that the relative class number Hd(f) is one. But it remained open

as to whether there exists such an f for each m. In this paper, we give

a result for existence of real quadratic field Q(
√
m) with relative class

number one where the period of continued fraction expansion of
√
m is 6.

1. Introduction

For a positive square-free integer m, let tm and um be positive integers such
that

εm =
tm + um

√
m

z
> 1

is the fundamental unit of the real quadratic field Q(
√
m), where z = 2 if m ≡

1 (mod 4) and z = 1 otherwise. The discriminant d of K is m if m ≡ 1 (mod 4),

otherwise d = 4m. The ring of integers or maximal order OK of K is Z[ 1+
√
m

2 ]
when m ≡ 1 (mod 4). Otherwise OK = Z[

√
m]. For f ∈ N, Of = Z + fOK is

called an order in OK of index f since [OK : Of ] = f . In this case, the index f
is called the conductor of Of in OK . By Dirichlet’s unit theorem, the units of
OK can be expressed by ±εim(i ∈ Z) where εm is the fundamental unit of OK .

The relative class number Hd(f) of K of discriminant d is the ratio of class
numbers OK and Of . Dirichlet[8] showed in 1856 that for certain m there exists
an infinite number of f such that the relative class number Hd(f) is one. But it
remained open as to whether there exists such an f for each m [4]. Furness and
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Parker [9] proved that there exists a prime f such that the relative class number
Hd(f) of a real quadratic field K = Q(

√
m) is one when

√
m has a particular

continued fraction form. In [7], Chakraborty and Saikia showed there exists a
conductor f of relative class number one when the continued fraction of

√
m is

non-diagonal of period 4 or 5. In this paper, we give a result for existence of
real quadratic field Q(

√
m) with relative class number one where the period of

continued fraction expansion of
√
m is 6.

The following formula obtained from Dirichlet(cf. [4]) is very useful.

Theorem 1.1. Let φ(f) be the smallest positive integer such that ε
φ(f)
m belong

to Of and ψ(f) = f Πq|f

(
1−

(
d
q

)
1
q

)
where

(
d
q

)
is Kronecker Symbol of d

modulo a prime q. Then

Hd(f) =
ψ(f)

φ(f)
. (1)

The Kronecker symbol
(
d
q

)
is the same as the Legendre symbol when q is

an odd prime. For q = 2 and an odd integer d,
(
d
q

)
is 1 if d ≡ ±1 (mod 8) and

−1 if d ≡ ±3 (mod 8). From the fact that the relative class number Hd(f) is an
integer(cf. [5]), we observe that φ(f) always divides ψ(f).

Now, we consider the continued fraction expansion of
√
m. Let lm be the

length of the period of the continued fraction of
√
m and plm−1/qlm−1 the

(lm − 1)-th convergent of it. For the relation between the continued fraction
of
√
m and the fundamental unit of the real quadratic field Q(

√
m), it is well

known as the following theorem(cf. [2, 14]).

Theorem 1.2. Let m be a positive square-free integer and εm the fundamental
unit of the real quadratic field Q(

√
m). Then

εm = plm−1 + qlm−1
√
m

or

ε3m = plm−1 + qlm−1
√
m

and the latter can only occur if d ≡ 5 (mod 8).

Except for the case that m ≡ 5 (mod 8), the fundamental unit of the real
quadratic field Q(

√
m) is εm = plm−1 + qlm−1

√
m. If m is a positive square-free

integer congruent to 5 modulo 8, by Theorem 1.2, then εm = plm−1 + qlm−1
√
m

or ε3m = plm−1 + qlm−1
√
m which means that um ≤ 2qlm−1.

2. Approach for the problem for existence of real quadratic field of
relative class number one for conductor f

In this paper, we are interested in existence of a real quadratic field of relative
class number one for conductor f . First, we remark how to approach this
problem.
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Remark 1. (1) If m does not divide um, one can find a prime f that divides
m but does not divide um because m is square-free. That means that
ψ(f) = f . On the other hand, by Theorem 1.1, φ(f) = 1 or f . But,
since εm does not belong to Of , φ(f) is equal to f and Hd(f) = 1.
Therefore, if m does not divide um, there always exists a prime f such
that Hd(f) = 1. In order to check the existence of a prime f where
Hd(f) = 1, it is enough to consider only the case that m divides um.

(2) If m divides um, it is more complicated. If m = 46, the fundamental

unit of Q(
√
d) is ε46 = 24335+3588

√
46. In this case, m divides um and

there does not exist a conductor f such that Hd(f) = 1(cf. [10, 15]).
On the other hand, if m = 1817, we easily find that Hd(2) = 1.

But, generally, it is difficult to check if m divides um or not. For all m < 107,
Stephen and Williams [17] found only 8 values where m divides um. They are
46, 430, 1817, 58254, 209991, 1752299, 3124318, and 4099215. In the case that
m is prime, the problem as to whether if m does not divide um is closely related
to two famous conjectures: One is Ankeny-Artin-Chowla conjecture[1], which
says that for any prime p congruent to 1 modulo 4, up 6≡ 0 (mod p). The other
one is the Mordell conjecture[16], which says that for any prime p congruent
to 3 modulo 4, up 6≡ 0 (mod p). In [2] and [11], in order to show that two
conjectures for special cases hold, authors proved that p > up. The inequality
p > up means that p does not divide up. Especially, when the length of period
lm of continued fraction of

√
m is less than equal to 4, Byeon and Lee [2] proved

that m > um for every square-free positive integer m. Furthermore, for the case
that lm = 5, they also observed there are infinitely many m such that um > m
and proved um 6≡ 0 (mod m).

Remark 2. Note that if m ≡ 2 (mod 4) or m ≡ 3 (mod 4), then um = qlm−1
by Theorem 1.2. If m ≡ 2 (mod 4) and um is odd, we easily observe that there
always exists a prime f such that Hd(f) = 1 by Remark 1 and parity between
m and um. If m ≡ 3 (mod 4) and um is odd, there always exists a prime f such
that Hd(f) = 1 by Theorem 4.1 of [6].

3. Relative class number one problem and continued fraction of
√
m

with period 6

In this paper, we consider the case that lm is 6. In [12], for existence of
continued fraction of

√
m with period 6, the following theorem is proved.

Theorem 3.1. Let lm be 6. If rs is even or rs is odd and t is even, there
always exists a positive integer a0 such that

√
m = [a0, r, s, t, s, r, 2a0]. For the

other cases, there does not exist such m.

Suppose that if m ≡ 2 (mod 4) or m ≡ 3 (mod 4). Then um = qlm−1. If the
period of continued fraction expansion of

√
m is 6, the expansion has the form

of
√
m = [a0, r, s, t, s, r, 2a0]. By Theorem 3.1, there exists the expansion only

for the cases that rs is even or rs is odd and t is even. By simple computation,
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we have um = q5 = r2s2t+ 2r2s+ 2rst+ t+ 2r. If rs is even and t is odd, we
easily observe that q5 is odd. That means that there exists a prime f such that
Hd(f) = 1 by Remark 2.

On the other hand, if rs is even and t is even or rs is odd and t is even, q5 is
even. For these cases, let’s consider for more concrete expression of m. Suppose
the continued fraction expansion of

√
m has the form [a0, r, s, t, s, r, 2a0]. Then

the positive integer m can be expressed as follows:

m = a20 + b, b =
2s+ s2t+ 2a0(rs2t+ st+ 2rs+ 1)

2r + 2r2s+ t+ 2rst+ r2s2t
.

Putting 2a0 = kr + u where 0 ≤ u < r, we have

b = k +A, A =
u(rs2t+ st+ 2sr + 1) + s2t+ 2s− k(rst+ t+ r)

r2s2t+ 2r2s+ 2rst+ t+ 2r
.

We can easily check that A < 1 by noting that r, s, and t are less than equal
to a0(cf. [13]). First, we consider the case A = 0, which means that

u(rs2t+ st+ 2sr + 1) + s2t+ 2s = k(rst+ t+ r).

That is,

k = us+
urs+ u+ s2t+ 2s

rst+ t+ r
.

If u = 0, then 2a0 = kr and s2t+ 2s = krst+kt+kr = 2a0st+ 2a0 +kt. But it
does not happen by the fact that r, s, and t are not greater than a0. Therefore,
u is a positive integer. In fact, there exists the case that A = 0 and u 6= 0. For
example, we consider the case that m = 966. The continued fraction expansion
of
√

966 is [31; 12, 2, 2, 2, 12, 62]. In this case, we have A = 0, u = 2, and k = 5.
Moreover, u966 = 1850, which means that m < um. But one can see that m
does not divide um. In general, for an even integer s, putting r = 2s2 + 2s,
t = 2, k = 2s+1, and u = 2, we have m = 4s6+12s5+13s4+10s3+7s2+4s+2,
um = q5 = 8s6 + 24s5 + 24s4 + 16s3 + 12s2 + 4s+ 2. In this case, we can observe
that m < um < 2m for every even positive integer s (Note that if s is an odd
integer, then m is not square-free since m is divided by 4). It means that m can
not divide um. Therefore, there exists a prime f such that Hd(f) = 1 for an
infinite real quadratic field family. Combining our results, we have the following
theorem.

Theorem 3.2. Let m be a square-free positive integer such that the continued
fraction expansion of

√
m have [a0, r, s, t, s, r, 2a0]. If t is odd, there exists a

prime f such that Hd(f) = 1. If rs is even and t is even, there are infinitely
many m satisfying m < um. Moreover, in that case, there exist infinitely many
real quadratic fields with relative class number one.

Remark 3. For the case that A 6= 0, it is more complicated to find an infinite
real quadratic fields family with relative class number one. For example, we
consider the case that m = 418. The continued fraction expansion of

√
418

is [20; 2, 4, 20, 4, 2, 40]. In this case, we have A = −2, u = 0, and k = 20.
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Moreover, u418 = 1656, which means that m < um. But m does not divide um.
Therefore there also exists a prime f such that Hd(f) = 1 for m = 418.

Remark 4. If m > um, we can easily see that m does not divide um. But, by
Theorem 3.2, there are infinitely many m satisfying m < um. Nevertheless, if
the period of the length of continued fraction expansion of

√
m is 6, we expect

that there always exists a prime f such that Hd(f) = 1. For a positive square-
free integer m less than 107, our statement is true.
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