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RELATIVE CLASS NUMBER ONE PROBLEM OF REAL
QUADRATIC FIELDS AND CONTINUED FRACTION OF /m
WITH PERIOD 6

JUN HO LEE

ABSTRACT. For a positive square-free integer m, let K = Q(1/m) be a real
quadratic field. The relative class number Hy(f) of K of discriminant d is
the ratio of class numbers Ok and Oy, where Of is the ring of integers
of K and Oy is the order of conductor f given by Z + fOg. In 1856,
Dirichlet showed that for certain m there exists an infinite number of f
such that the relative class number Hy(f) is one. But it remained open
as to whether there exists such an f for each m. In this paper, we give
a result for existence of real quadratic field Q(y/m) with relative class
number one where the period of continued fraction expansion of y/m is 6.

1. Introduction

For a positive square-free integer m, let t,, and u,, be positive integers such
that

€m

:tm+um\/ﬁ>1
z

is the fundamental unit of the real quadratic field Q(y/m), where z = 2 if m =
1(mod 4) and z = 1 otherwise. The discriminant d of K is m if m = 1 (mod 4),

otherwise d = 4m. The ring of integers or maximal order Ok of K is Z[%]
when m = 1 (mod 4). Otherwise O = Z[y/m]. For f € N, Oy = Z + fOx is
called an order in Ok of index f since [Ok : Of] = f. In this case, the index f
is called the conductor of Of in Og. By Dirichlet’s unit theorem, the units of
Ok can be expressed by e’ (i € Z) where ¢, is the fundamental unit of Of.

The relative class number Hy(f) of K of discriminant d is the ratio of class
numbers O and Oy. Dirichlet[8] showed in 1856 that for certain m there exists
an infinite number of f such that the relative class number Hy(f) is one. But it
remained open as to whether there exists such an f for each m [4]. Furness and
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Parker [9] proved that there exists a prime f such that the relative class number
Hy(f) of a real quadratic field K = Q(y/m) is one when /m has a particular
continued fraction form. In [7], Chakraborty and Saikia showed there exists a
conductor f of relative class number one when the continued fraction of v/m is
non-diagonal of period 4 or 5. In this paper, we give a result for existence of
real quadratic field Q(y/m) with relative class number one where the period of
continued fraction expansion of v/m is 6.
The following formula obtained from Dirichlet(cf. [4]) is very useful.

Theorem 1.1. Let ¢(f) be the smallest positive integer such that eiff) belong
to Oy and Y(f) = flg; (1 — <4> %) where (g) is Kronecker Symbol of d

q
modulo a prime q. Then

_ )

The Kronecker symbol <§) is the same as the Legendre symbol when ¢ is

q
—1if d = £3 (mod 8). From the fact that the relative class number Hy(f) is an
integer(cf. [5]), we observe that ¢(f) always divides 1(f).

Now, we consider the continued fraction expansion of \/m. Let [, be the
length of the period of the continued fraction of \/m and p;,,—1/q,,—1 the
(I — 1)-th convergent of it. For the relation between the continued fraction
of /m and the fundamental unit of the real quadratic field Q(y/m), it is well

known as the following theorem(cf. [2, 14]).

an odd prime. For ¢ = 2 and an odd integer d, (4) is 1if d = £1 (mod 8) and

Theorem 1.2. Let m be a positive square-free integer and €,, the fundamental
unit of the real quadratic field Q(v/m). Then

€m = Dlp—1 + Qp—1vV/M
or

€3y = Plp—1 + Q1 —1V/M
and the latter can only occur if d =5 (mod 8).

Except for the case that m = 5 (mod 8), the fundamental unit of the real
quadratic field Q(v/m) is €, = p1,, -1 + @, —1/m. If m is a positive square-free

integer congruent to 5 modulo 8, by Theorem 1.2, then €,, = pi,, —1+q,,—1vVM
or €, =pi,,—1+ q,, —1y/m which means that u,, < 2q,, _1.

2. Approach for the problem for existence of real quadratic field of
relative class number one for conductor f

In this paper, we are interested in existence of a real quadratic field of relative
class number one for conductor f. First, we remark how to approach this
problem.
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Remark 1. (1) If m does not divide u,,, one can find a prime f that divides
m but does not divide u,, because m is square-free. That means that
¥(f) = f. On the other hand, by Theorem 1.1, ¢(f) = 1 or f. But,
since €,, does not belong to Of, ¢(f) is equal to f and Hy(f) = 1.
Therefore, if m does not divide u,,, there always exists a prime f such
that Hy(f) = 1. In order to check the existence of a prime f where
Hy(f) =1, it is enough to consider only the case that m divides uy,.

(2) If m divides up,, it is more complicated. If m = 46, the fundamental
unit of Q(V/d) is €45 = 24335+ 3588v/46. In this case, m divides u,, and
there does not exist a conductor f such that Hy(f) = 1(cf. [10, 15]).
On the other hand, if m = 1817, we easily find that H4(2) = 1.

But, generally, it is difficult to check if m divides u,, or not. For all m < 107,
Stephen and Williams [17] found only 8 values where m divides u,,. They are
46, 430, 1817, 58254, 209991, 1752299, 3124318, and 4099215. In the case that
m is prime, the problem as to whether if m does not divide u,, is closely related
to two famous conjectures: One is Ankeny-Artin-Chowla conjecture[1], which
says that for any prime p congruent to 1 modulo 4, u, # 0 (mod p). The other
one is the Mordell conjecture[16], which says that for any prime p congruent
to 3 modulo 4, u, # 0(mod p). In [2] and [11], in order to show that two
conjectures for special cases hold, authors proved that p > w,. The inequality
p > u, means that p does not divide u,. Especially, when the length of period
I, of continued fraction of y/m is less than equal to 4, Byeon and Lee [2] proved
that m > wu,, for every square-free positive integer m. Furthermore, for the case
that [,, = 5, they also observed there are infinitely many m such that w,, > m
and proved u,, # 0 (mod m).

Remark 2. Note that if m = 2 (mod 4) or m = 3 (mod 4), then u,, = q,,—1
by Theorem 1.2. If m = 2 (mod 4) and wu,, is odd, we easily observe that there
always exists a prime f such that Hy(f) = 1 by Remark 1 and parity between
m and u,,. If m = 3 (mod 4) and u,, is odd, there always exists a prime f such
that Hy(f) = 1 by Theorem 4.1 of [6].

3. Relative class number one problem and continued fraction of \/m
with period 6

In this paper, we consider the case that [, is 6. In [12], for existence of
continued fraction of 1/m with period 6, the following theorem is proved.

Theorem 3.1. Let l,, be 6. If rs is even or rs is odd and t is even, there
always exists a positive integer ag such that /m = lag, 1, s,t, 8,1, 2ag]. For the
other cases, there does not exist such m.

Suppose that if m = 2 (mod 4) or m = 3 (mod 4). Then u,, = q;,, —1. If the
period of continued fraction expansion of v/m is 6, the expansion has the form
of /m = [ag,r,s,1,8,7,2a0]. By Theorem 3.1, there exists the expansion only
for the cases that rs is even or rs is odd and ¢ is even. By simple computation,
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we have u,, = q5 = r2s%t + 2r2s 4 2rst +t + 2r. If rs is even and t is odd, we
easily observe that ¢s is odd. That means that there exists a prime f such that
H;(f) =1 by Remark 2.

On the other hand, if rs is even and ¢ is even or rs is odd and ¢ is even, g5 is
even. For these cases, let’s consider for more concrete expression of m. Suppose
the continued fraction expansion of v/m has the form [ag, 1, s,t, s, 7, 2ag]. Then
the positive integer m can be expressed as follows:
m=al+b b= 25 + 8%t + 2a9(rs®t + st + 2rs + 1)

2r + 2r2s +t + 2rst + r2s%t
Putting 2a¢g = kr + v where 0 < u < r, we have
u(rs®t + st + 2sr + 1) + st + 25 — k(rst +t +7)
7252t + 2r2s + 2rst +t + 2r
We can easily check that A < 1 by noting that r, s, and ¢ are less than equal
to ag(ctf. [13]). First, we consider the case A = 0, which means that

u(rs®t 4 st + 2sr + 1) 4 8%t + 25 = k(rst +t + 7).

b=k+A, A=

That is,
urs +u + 2t + 2s
rst+t+7r

If w = 0, then 2ag = kr and s%t+2s = krst + kt + kr = 2agst + 2ao + kt. But it
does not happen by the fact that r, s, and ¢ are not greater than ag. Therefore,
u is a positive integer. In fact, there exists the case that A = 0 and u # 0. For
example, we consider the case that m = 966. The continued fraction expansion
of v/966 is [31;12,2,2,2,12,62]. In this case, we have A =0, u = 2, and k = 5.
Moreover, uggg = 1850, which means that m < wu,,. But one can see that m
does not divide u,,. In general, for an even integer s, putting r = 2s% + 2s,
t=2k=2s+1,and u = 2, we have m = 455 +12s° +135* + 1053 + 752 + 45+ 2,
Um = g5 = 855 + 2455 +245% + 165 + 1252 +4s+2. In this case, we can observe
that m < u,, < 2m for every even positive integer s (Note that if s is an odd
integer, then m is not square-free since m is divided by 4). It means that m can
not divide u,,. Therefore, there exists a prime f such that Hy(f) = 1 for an
infinite real quadratic field family. Combining our results, we have the following
theorem.

k=us+

Theorem 3.2. Let m be a square-free positive integer such that the continued
fraction ezpansion of \/m have [ag,T,5,t,5,7,2a0]. If t is odd, there exists a
prime f such that Hy(f) = 1. If rs is even and t is even, there are infinitely
many m satisfying m < u,,. Moreover, in that case, there exist infinitely many
real quadratic fields with relative class number one.

Remark 3. For the case that A # 0, it is more complicated to find an infinite
real quadratic fields family with relative class number one. For example, we
consider the case that m = 418. The continued fraction expansion of V418
is [20;2,4,20,4,2,40]. In this case, we have A = —2, u = 0, and k = 20.
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Moreover, u41g8 = 1656, which means that m < wu,,. But m does not divide u,,.
Therefore there also exists a prime f such that Hy(f) = 1 for m = 418.

Remark 4. If m > u,,, we can easily see that m does not divide u,,. But, by
Theorem 3.2, there are infinitely many m satisfying m < u,,. Nevertheless, if
the period of the length of continued fraction expansion of \/m is 6, we expect
that there always exists a prime f such that H;(f) = 1. For a positive square-
free integer m less than 107, our statement is true.

References

[1] N. C. Ankeny, E. Artin, S. Cholwa, The class-number of real quaratic fields, Ann. of
Math. (2) 56 (1952), 479-493.
[2] D. Byeon, S. Lee, A note on units of real quadratic fields, Bull. Korean Math. Soc. 49
(2012), 767-774.
[3] B. D. Beach, H. C. Williams, C. R. Zarmle, Some computer results on units in qua-
dratic and cubic fields, Proc. 25th Summer Meeting Can. Math. Congress(Lakeland Univ.,
Thunder Bay, Ontario, 1971), pp. 609-648, Lakehead Univ., Thunder Bay, Ontario, 1971.
[4] H. Cohn, A second course in number theory, Wiley, 1962.
[5] , A numerical study of the relative class numbers of real quadratic integral do-
masns, Math. Comp. 16 (1962), 127-140.
[6] D. Chakraborty, A. Saikia, Another look at real quadratic fields of relative class number
1, Acta Arith. 163 (2014), no. 4, 371-377.
, On relative class number and continued fractions, Bull. Korean Math. Soc. 52
(2015), no. 5, 1559-1568.
[8] L. Dirichlet, Une propriété des formes quadratiques a déterminant positif, J. de
Math. Pure. Appl., 2 Series. Tome 1 (1856), 76-79.
[9] A. Furness, E. A. Parker On Dirichlet’s conjecture on relative class number one, J. Num-
ber Theory 132 (2012), no. 7, 1398-1403.
, Real quadratic fields in which every nonmazimal order has relative ideal class
number greater than one, Ann. Sci. Math. Québec 36 (2013), no. 2, 413-421.

[11] R. Hashimoto, Ankeny-Artin-Chowla conjecture and continued fraction expansion,
J. Number Theory, 90 (2001), 143-153.

[12] J. H. Lee, Exzistence of the continued fractions of Vd and its applications, Submitted.

[13] F. Kawamoto, Y. Kishi, K. Tomita, Continued Fraction Ezrpansions with even period
and primary symmetric parts with extremely lagre end, Comment. Math. Uni. St. Pauli
64 (2015), no. 2, 131-155.

[14] R. A. Mollin, Quadratics, CRC Press Series on Discrete Mathematics and its applications.
CRC Press, Boca Raton, FL, 1996.

, Proof of relative class number one for almost all real quadratic fieids and a
counterezample for the rest, Gen. Math. Notes 17 (2013), no. 2, 81-90.

[16] L. J. Mordell, On a Pellian equation conjecture II, J. London Math. Soc. 36 (1961),
282-288.

[17] A. J. Stephene, H. C. Williams, Some computatinal results on a problem concerning
powerful numbers, Math. Comp. 50 (1988), 619-632.

[7]

(10]

(15]

Jun Ho LEE

DEPARTMENT OF MATHEMATICS EDUCATION, MOKPO NATIONAL UNIVERSITY, 1666 YEONGSAN-
RO, CHEONGGYE-MYEON, MUAN-GUN, JEONNAM, 58554, REPUBLIC OF KOREA

E-mail address: junho@mokpo.ac.kr



