• Title/Summary/Keyword: fraction algorithm

Search Result 214, Processing Time 0.06 seconds

Development of a Biophysical Rice Yield Model Using All-weather Climate Data (MODIS 전천후 기상자료 기반의 생물리학적 벼 수량 모형 개발)

  • Lee, Jihye;Seo, Bumsuk;Kang, Sinkyu
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.721-732
    • /
    • 2017
  • With the increasing socio-economic importance of rice as a global staple food, several models have been developed for rice yield estimation by combining remote sensing data with carbon cycle modelling. In this study, we aimed to estimate rice yield in Korea using such an integrative model using satellite remote sensing data in combination with a biophysical crop growth model. Specifically, daily meteorological inputs derived from MODIS (Moderate Resolution imaging Spectroradiometer) and radar satellite products were used to run a light use efficiency based crop growth model, which is based on the MODIS gross primary production (GPP) algorithm. The modelled biomass was converted to rice yield using a harvest index model. We estimated rice yield from 2003 to 2014 at the county level and evaluated the modelled yield using the official rice yield and rice straw biomass statistics of Statistics Korea (KOSTAT). The estimated rice biomass, yield, and harvest index and their spatial distributions were investigated. Annual mean rice yield at the national level showed a good agreement with the yield statistics with the yield statistics, a mean error (ME) of +0.56% and a mean absolute error (MAE) of 5.73%. The estimated county level yield resulted in small ME (+0.10~+2.00%) and MAE (2.10~11.62%),respectively. Compared to the county-level yield statistics, the rice yield was over estimated in the counties in Gangwon province and under estimated in the urban and coastal counties in the south of Chungcheong province. Compared to the rice straw statistics, the estimated rice biomass showed similar error patterns with the yield estimates. The subpixel heterogeneity of the 1 km MODIS FPAR(Fraction of absorbed Photosynthetically Active Radiation) may have attributed to these errors. In addition, the growth and harvest index models can be further developed to take account of annually varying growth conditions and growth timings.

Reproducibility of Gated Myocardial Perfusion SPECT for the Assessment of Myocardial Function: Comparison with Thallium-201 and Technetium-99m-MIBI (심근 기능 측정에 사용된 게이트 심근 관류 SPECT 방법의 재현성 평가: $^{201}Tl$$^{99m}Tc$-MIBI 게이트 SPECT의 비교)

  • Hyun, In-Young;Seo, Jeong-Kee;Hong, Eui-Soo;Kim, Dae-Hyuk;Kim, Sung-Eun;Kwan, Jun;Park, Keum-Soo;Choe, Won-Sick;Lee, Woo-Hyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.5
    • /
    • pp.381-392
    • /
    • 2000
  • Purpose: We compared the reproducibility of $^{201}Tl\;and\;^{99m}Tc$-sestamibi (MIBI) gated SPECT measurement of myocardial function using the Germano algorithm Materials and Methods: Gated SPECT acquisition was repeated in the same position in 30 patients who received $^{201}Tl$ and in 26 who received $^{99m}Tc$-MIBI. The quantification of end-diastolic volume (EDV), end-systolic volume (ESV), and ejection fraction (EF) on $^{201}Tl\;and\;^{99m}Tc$-MIBI gated SPECT was processed independently using Cedars quantitative gated SPECT software. The reproducibility of the assessment of myocardial function on $^{201}Tl$ gated SPECT was compared with that of $^{99m}Tc$-MIBI gated SPECT Results: Correlation between the two measurements for volumes and EF was excellent by the repeated gated SPECT studies of $^{201}Tl$ (r=0.928 to 0.986; p<0.05) and $^{99m}Tc$-MIBI (r=0.979 to 0.997; p<0.05). However, Bland Altman analysis revealed the 95% limits of agreement (2 SD) for volumes and EF were tighter by repeated $^{99m}Tc$-MIBI gated SPECT (EDV: 14.1 ml, ESV: 9.4 ml and EF: 5.5%) than by repeated $^{201}Tl$ gated SPECT (EDV: 24.1 ml, ESV: 18.6 ml and EF: 10.3%). The root mean square (RMS) values of the coefficient of variation (CV) for volumes und EFs were smaller by repeated $^{99m}Tc$-MIBI gated SPECT (EDV: 2.1 ml, ESV 2.7 ml and EF: 2.3%) than by repeated $^{201}Tl$ gated SPECT (EDV: 3.2 ml, ESV: 3.5 ml and EF: 5.2%). Conclusion: $^{99m}Tc$-MIBI provides more reproducible volumes and EF than $^{201}Tl$ on repeated acquisition gated SPECT. $^{99m}Tc$-MIBI gated SPECT is the preferable method for the clinical monitoring of myocardial function.

  • PDF

Temporal and Spatial Characteristics of Sediment Yields from the Chungju Dam Upstream Watershed (충주댐 상류유역의 유사 발생에 대한 시공간적인 특성)

  • Kim, Chul-Gyum;Lee, Jeong-Eun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.11
    • /
    • pp.887-898
    • /
    • 2007
  • A physically based semi-distributed model, SWAT was applied to the Chungju Dam upstream watershed in order to investigate the spatial and temporal characteristics of watershed sediment yields. For this, general features of the SWAT and sediment simulation algorithm within the model were described briefly, and watershed sediment modeling system was constructed after calibration and validation of parameters related to the runoff and sediment. With this modeling system, temporal and spatial variation of soil loss and sediment yields according to watershed scales, land uses, and reaches was analyzed. Sediment yield rates with drainage areas resulted in $0.5{\sim}0.6ton/ha/yr$ excluding some upstream sub-watersheds and showed around 0.51 ton/ha/yr above the areas of $1,000km^2$. Annual average soil loss according to land use represented the higher values in upland areas, but relatively lower in paddy and forest areas which were similar to the previous results from other researchers. Among the upstream reaches, Pyeongchanggang and Jucheongang showed higher sediment yields which was thought to be caused by larger area and higher fraction of upland than other upstream sub-areas. Monthly sediment yields at the main outlet showed same trend with seasonal rainfall distribution, that is, approximately 62% of annual yield was generated during July to August and the amount was about 208 ton/yr. From the results, we could obtain the uniform value of sediment yield rate and could roughly evaluate the effect of soil loss with land uses, and also could analyze the temporal and spatial characteristics of sediment yields from each reach and monthly variation for the Chungju Dam upstream watershed.

The Analysis of Dose in a Rectum by Multipurpose Brachytherapy Phantom (근접방사선치료용 다목적 팬톰을 이용한 직장 내 선량분석)

  • Huh, Hyun-Do;Kim, Seong-Hoon;Cho, Sam-Ju;Lee, Suk;Shin, Dong-Oh;Kwon, Soo-Il;Kim, Hun-Jung;Kim, Woo-Chul;K. Loh John-J.
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.223-229
    • /
    • 2005
  • Purpose: In this work we designed and made MPBP(Multi Purpose Brachytherapy Phantom). The MPBP enables one to reproduce the same patient set-up in MPBP as the treatment of the patient and we tried to get an exact analysis of rectal doses in the phantom without need of in-vivo dosimetry. Materials and Methods: Dose measurements were tried at a point of rectum 1, the reference point of rectum, with a diode detector for 4 patients treated with tandem and ovoid for a brachytherapy of a cervix cancer. Total 20 times of rectal dose measurements were made with 5 times a patient. The set-up variation of the diode detector was analyzed. The same patient set-ups were reproduced in self-made MPBP and then rectal doses were measured with TLD. Results: The measurement results of the diode detector showed that the set-up variation of the diode detector was the maximum $11.25{\pm}0.95mm$ in the y-direction for Patient 1 and the maximum $9.90{\pm}4.50mm,\;20.85{\pm}4.50mm,\;and\;19.15{\pm}3.33mm$ in the z-direction for Patient 2, 3, and 4, respectively. Un analyzing the degree of variation in 3 directions the more variation was showed in the z-direction than x- and y-direction except Patient 1. The results of TLD measurements in MPBP showed the relative maximum error of 8.6% and 7.7% at a point of rectum 1 for Patient 1 and 4, respectively and 1.7% and 1.2% for Patient 2 and 3, respectively. The doses measured at R1 and R2 were higher than those calculated except R point of Patient 2. this can be thought to related to the algorithm of dose calculation, whcih corrects for air and water but is guessed not to consider the correction for the scattered rays, but by considering the self-error (${\pm}5%$) TLD has the relative error of values measured and calculated was analyzed to be in a good agreement within 15%. Conclusion: The reproducibility of dose measurements under the same condition as the treatment could be achieved owing to the self-made MPMP and the dose at the point of interest could be analyzed accurately. If a treatment is peformed after achieving dose optimization using the data obtained in the phantom, dose will be able to be minimized to important organs.