• Title/Summary/Keyword: fractal space

Search Result 90, Processing Time 0.022 seconds

Fractal Properties and Cognitive Ecological effects in Space Design - Focused on Landscape Pattern - (공간디자인에 적용된 프랙탈 특성의 인지생태론적 효과 - 랜드스케이프 패턴을 중심으로 -)

  • Kim, Joo-Mi
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.2
    • /
    • pp.120-130
    • /
    • 2011
  • The purpose of this study is to propose cognitive ecological effects of fractal patterns in space design. This study investigated the perception and cognition problems regarding landscape patterns showing fractal properties from the cognitive perspective instead of the traditional speculative approach. In particular, the researcher has verified that fractal geometry theory and fractal pattern concept provide insight in space aesthetic values and cognitive effects. Research results are as follows. First, most environmentally-friendly fractal urban forms provide cognitive connectivity. In particular, this space provides a positive emotional response and preference to humans and displays self-organized complexity. This study found that such complexity of space form has characteristics corresponding to parallel cognitive structures of the human brain. Simultaneously, the researcher suggests that the fractal landscape pattern is an alternative for stiff and homogenized modern space. Second, fractal patterns provide hierarchical connectivity within the brain through continuous difference and repetition. In particular, self-similarities of fractal patterns administer significant visual grouping and coherence in human perception. It can be determined whether scaling coherence facilitates easier organization in cognitive organization. Third, fractal patterns in space design provide the basic method for achieving the connection between concept, construction, and urban factors. As a result, the researcher has suggested that scale distribution of geometrical factors, such as fractal patterns, an be a design method to connect various space typologies.

FRACTAL DIMENSIONS OF INTERSTELLAR MEDIUM: II. THE MOLECULAR CLOUDS ASSOCIATED WITH THE HII REGION SH 156

  • Lee, Young-Ung;Kang, Mi-Ju;Kim, Bong-Kyu;Jung, Jae-Hoon;Kim, Hyun-Goo;Yim, In-Sung;Kang, Hyung-Woo;Choi, Ji-Hoon
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.6
    • /
    • pp.157-161
    • /
    • 2008
  • We have estimated the fractal dimension of the molecular clouds associated with the Hii region Sh 156 in the Outer Galaxy. We selected the $^{12}CO$ cube data from the FCRAO CO Survey of the Outer Galaxy. Using a developed code within IRAF, we identified slice-clouds (2-dimensional clouds in velocity-channel maps) with two threshold temperatures to estimate the fractal dimension. With the threshold temperatures of 1.8 K, and 3 K, we identified 317 slice-clouds and 217 slice-clouds, respectively. There seems to be a turn-over location in fractional dimension slope around NP (area; number of pixel) = 40. The fractal dimensions was estimated to be D = $1.5\;{\sim}\;1.53$ for $NP\;{\geq}\;40$, where $P\;{\propto}\;A^{D/2}$ (P is perimeter and A is area), which is slightly larger than other results. The sampling rate (spatial resolution) of observed data must be an important parameter when estimating fractal dimension. Fractal dimension is apparently invariant when varying the threshold temperatures applied to slice-clouds identification.

Fractal-space Multiplexing using A Double-Focusing tens (이중초점 렌즈를 이용한 Fractal-space 다중화)

  • Kim, Soo-Gil;Hong, Sun-Ki
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.277-280
    • /
    • 2001
  • We proposed a novel fractal-space multiplexing holographic memory system using moving window and double-focusing lens, which can eliminate crosstalk due to two neighboring moving window rows in the vertical direction of the conventional moving window holographic memory system, and demonstrated its feasibility through optical experiments.

THE FRACTAL DIMENSION OF THE 𝜌 OPHIUCUS MOLECULAR CLOUD COMPLEX

  • Lee, Yongung;Li, Di;Kim, Y.S.;Jung, J.H.;Kang, H.W.;Lee, C.H.;Yim, I.S.;Kim, H.G.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.255-259
    • /
    • 2016
  • We estimate the fractal dimension of the ${\rho}$ Ophiuchus Molecular Cloud Complex, associated with star forming regions. We selected a cube (${\upsilon}$, l, b) database, obtained with J = 1-0 transition lines of $^{12}CO$ and $^{13}CO$ at a resolution of 22" using a multibeam receiver system on the 14-m telescope of the Five College Radio Astronomy Observatory. Using a code developed within IRAF, we identified slice-clouds with two threshold temperatures to estimate the fractal dimension. With threshold temperatures of 2.25 K ($3{\sigma}$) and 3.75 K ($5{\sigma}$), the fractal dimension of the target cloud is estimated to be D = 1.52-1.54, where $P{\propto}A^{D/2}$, which is larger than previous results. We suggest that the sampling rate (spatial resolution) of observed data must be an important parameter when estimating the fractal dimension, and that narrower or wider dispersion around an arbitrary fit line and the intercepts at NP = 100 should be checked whether they relate to firms noise level or characteristic structure of the target cloud. This issue could be investigated by analysing several high resolution databases with different quality (low or moderate sensitivity).

The Analytical Derivation of the Fractal Advection-Diffusion Equation for Modeling Solute Transport in Rivers (하천 오염물질의 모의를 위한 프랙탈 이송확산방정식의 해석적 유도)

  • Kim, Sang-Dan;Song, Mee-Young
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.889-896
    • /
    • 2004
  • The fractal advection-diffusion equation (ADE) is a generalization of the classical AdE in which the second-order derivative is replaced with a fractal order derivative. While the fractal ADE have been analyzed with a stochastic process In the Fourier and Laplace space so far, in this study a fractal ADE for describing solute transport in rivers is derived with a finite difference scheme in the real space. This derivation with a finite difference scheme gives the hint how the fractal derivative order and fractal diffusion coefficient can be estimated physically In contrast to the classical ADE, the fractal ADE is expected to be able to provide solutions that resemble the highly skewed and heavy-tailed time-concentration distribution curves of contaminant plumes observed in rivers.

FRACTAL DIMENSION AND MAXIMUM SUNSPOT NUMBER IN SOLAR CYCLE (태양주기별 흑점수의 프랙탈 차원과 최대흑점수의 상관관계)

  • Kim R.S.;Yi Y.;Cho K.S.;Moon Y.J.;Kim S.W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.227-236
    • /
    • 2006
  • The fractal dimension is a quantitative parameter describing the characteristics of irregular time series. In this study, we use this parameter to analyze the irregular aspects of solar activity and to predict the maximum sunspot number in the following solar cycle by examining time series of the sunspot number. For this, we considered the daily sunspot number since 1850 from SIDC (Solar Influences Data analysis Center) and then estimated cycle variation of the fractal dimension by using Higuchi's method. We examined the relationship between this fractal dimension and the maximum monthly sunspot number in each solar cycle. As a result, we found that there is a strong inverse relationship between the fractal dimension and the maximum monthly sunspot number. By using this relation we predicted the maximum sunspot number in the solar cycle from the fractal dimension of the sunspot numbers during the solar activity increasing phase. The successful prediction is proven by a good correlation (r=0.89) between the observed and predicted maximum sunspot numbers in the solar cycles.

A new description of the fractal dimension of particle aggregates in liquid medium

  • Xing, Jun;Ding, Shiqiang;Liu, Zhengning;Xu, Jirun
    • Particle and aerosol research
    • /
    • v.11 no.4
    • /
    • pp.99-105
    • /
    • 2015
  • The possible existence forms of particle aggregates in liquid medium are classified into four different types according to their morphological characteristics, including the single particles that are separated from each other, the linear aggregates in which all component particles are located in a line, the planar aggregates where all particles are arranged on a plane, and the volumetric aggregates where all particles forms a three-dimensional space. These particle aggregates with different space morphologies have different fractal dimensions and different influence on the rheological phenomena of the solid-liquid system. The effects of various aggregates on the suspension viscosity are analyzed and related with the particle concentration, and then a mathematical model is presented to determine the fractal dimensions of various aggregates by measuring the apparent viscosity of the solid-liquid system. In the model, the viscous fractal dimension is developed as a new concept, the fractal dimensions of different aggregates can be obtained separately and then the relative components of various aggregates experimentally analyzed.

Evaluation of Chaotic evaluation of degradation signals of AISI 304 steel using the Attractor Analysis (어트랙터 해석을 이용한 AISI 304강 열화 신호의 카오스의 평가)

  • 오상균
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2000
  • This study proposes that analysis and evaluation method of time series ultrasonic signal using the chaotic feature extrac-tion for degradation extent. Features extracted from time series data using the chaotic time series signal analyze quantitatively material degradation extent. For this purpose analysis objective in this study if fractal dimension lyapunov exponent and strange attractor on hyperspace. The lyapunov exponent is a measure of the rate at which nearby trajectories in phase space diverge. Chaotic trajectories have at least one positive lyapunov exponent. The fractal dimension appears as a metric space such as the phase space trajectory of a dynamical syste, In experiment fractal(correlation) dimensions and lyapunov experiments showed values of mean 3.837-4.211 and 0.054-0.078 in case of degradation material The proposed chaotic feature extraction in this study can enhances ultrasonic pattern recognition results from degrada-tion signals.

  • PDF

Chaotic evaluation of material degradation time series signals of SA 508 Steel considering the hyperspace (초공간을 고려한 SA 508강의 재질열화 시계열 신호의 카오스성 평가)

  • 고준빈;윤인식;오상균;이영호
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.86-96
    • /
    • 1998
  • This study proposes the analysis method of time series ultrasonic signal using the chaotic feature extraction for degradation extent evaluation. Features extracted from time series data using the chaotic time series signal analyze quantitatively degradation extent. For this purpose, analysis objective in this study is fractal dimension, lyapunov exponent, strange attractor on hyperspace. The lyapunov exponent is a measure of the rate at which nearby trajectories in phase space diverge. Chaotic trajectories have at least one positive lyapunov exponent. The fractal dimension appears as a metric space such as the phase space trajectory of a dynamical system. In experiment, fractal correlation) dimensions, lyapunov exponents, energy variation showed values of 2.217∼2.411, 0.097∼ 0.146, 1.601∼1.476 voltage according to degardation extent. The proposed chaotic feature extraction in this study can enhances precision ate of degradation extent evaluation from degradation extent results of the degraded materials (SA508 CL.3)

  • PDF

The Characteristics of Koch Island Microstrip Patch Antenna

  • Kim, Il-Kwon;Yook, Jong-Gwan;Park, Han-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3A
    • /
    • pp.166-170
    • /
    • 2003
  • In this paper, the characteristics of Koch island microstrip patch antenna are investigated by numerical and experimental methods. The Koch patch is fractal shaped antenna which can be characterized by two properties such as space-filling and self-similarity. Due to its space-filling property of fractal structure, the proposed Koch fractal patch antennas are smaller in size than that of conventional square patch antenna. From numerical and experimental results, it is found that as the iteration number and iteration factor of Koch patch increase, its resonance frequency becomes lower than that of conventional patch, thus contributes to antenna size reduction. In particular, when the fractal iteration factor is 1/4, the fractal antenna is 45% smaller in size than that of conventional patch, while maintaining radiation patterns comparable to those of rectangular antenna and cross polarization level is about -20~-14 dB.