• Title/Summary/Keyword: fractal array

Search Result 15, Processing Time 0.019 seconds

Characteristics of Circular Polarization of Microstrip Patch Antenna Based on the Sierpinski Fractal Equilaterial Triangular (Sierpinski 프랙탈 삼각형에 기초한 마이크로스트립 패치 안테나의 원형 편파 특성)

  • 심재륜
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.234-237
    • /
    • 2002
  • A microstrip patch antenna with circular polarization based on the Sierpinski fractal is composed of 3 equilaterial triangular Polarization by sequentially rotation techniques. The characteristics of a $1\times3$ antenna array from Sierpinski geometry an investigated, i.e. port isolation and AR(axial Ratio).

  • PDF

Reduction of Input Pins in VLSI Array for High Speed Fractal Image Compression (고속 프랙탈 영상압축을 위한 VLSI 어레이의 입력핀의 감소)

  • 성길영;전상현;이수진;우종호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2059-2066
    • /
    • 2001
  • In this paper, we proposed a method to reduce the number of input pins in one-dimensional VLSI array for fractal image compression. We use quad-tree partition scheme and can reduce the number of the input pins up to 50% by sharing the domain\`s and the range\`s data input pins in the proposed VLSI array architecture. Also, we can reduce the input pins and simplify the internal operation circuit of the processing elements by eliminating a few number of bits of the least significant bits of the input data. We simulated using the 256$\times$256 and 512$\times$512 Lena images to verify performance of the proposed method. As the result of simulation, we can decompress the original image with about 32dB(PSNR) in spite of elimination of the least significant 2-bit in the original input data, and additionally reduce the number of input pins up to 25% compared to VLSI array sharing input pins of range and domain.

  • PDF

Evaluation of Concrete-Track Deformation for High-Speed Railways by Characteristic Stiffness (강성특성치를 이용한 고속전철 콘크리트궤도의 처짐가능성 평가)

  • Joh, Sung-Ho;Lee, Il-Wha;Hwang, Seon-Keun;Kang, Tae-Ho;Kim, Seok-Chul
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.641-646
    • /
    • 2009
  • Concrete tracks are superior to ballast tracks in the aspect of durability, maintenance and safety. However, deteriorated stiffness of railroad bed and settlement of soft ground induced by trapped or seepage water lead to problems in safety of train operation. In this research, characteristic stiffness of concrete tracks, which is determined from FRACTAL (Flexural-Rigidity Assessment of Concrete Tracks by Antisymmetric Lamb Waves) technique, was employed as an index of track displacement. The characteristic stiffness is defined using Poisson's ratio, moment of inertia and stiffness ratio of subgrade to slab. To verify validity and reliability of the proposed characteristic stiffness, experimental and theoretical researches were performed. Feasibility of the characteristic stiffness based on FRACTAL technique was proved at a real concrete track for Korean high-speed trains. Validity of the FRACTAL technique was also verified by comparing the results of impulse-response tests performed at the same measurement array and the results of SASW tests and DC resistivity survey performed at a shoulder nearby the track.

  • PDF

Design and Implementation of Efficient Decoder for Fractal-based Compressed Image (효율적 프랙탈 영상 압축 복호기의 설계 및 구현)

  • Kim, Chun-Ho;Kim Lee-Sup
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.11-19
    • /
    • 1999
  • Fractal image compression algorithm has been studied mostly not in the view of hardware but software. However, a general processor by software can't decode fractal compressed images in real-time. Therefore, it is necessary that we develop a fast dedicated hardware. However, design examples of dedicated hardware are very rare. In this paper, we designed a quadtree fractal-based compressed image decoder which can decode $256{\times}256$ gray-scale images in real-time and used two power-down methods. The first is a hardware-optimized simple post-processing, whose role is to remove block effect appeared after reconstruction, and which is easier to be implemented in hardware than non-2' exponents weighted average method used in conventional software implementation, lessens costs, and accelerates post-processing speed by about 69%. Therefore, we can expect that the method dissipates low power and low energy. The second is to design a power dissipation in the multiplier can be reduced by about 28% with respect to a general array multiplier which is known efficient for low power design in the size of 8 bits or smaller. Using the above two power-down methods, we designed decoder's core block in 3.3V, 1 poly 3 metal, $0.6{\mu}m$ CMOS technology.

  • PDF

INTERSTELLAR ENVIRONMENTS IN THE LARGEMAGELLANIC CLOUD

  • KIM SUNGEUN
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.211-216
    • /
    • 2004
  • We present the results of an H I aperture synthesis mosaic of the Large Magellanic Cloud (LMC), made by combining data from 1344 separate pointing centers using the Australia Telescope Compact' Array (ATCA) and the Parkes multibeam receiver. The resolution of the mosaiced images is 50" (<15 pc, using a distance to the LMC of 55kpc). This mosaic, with a spatial resolution .15 times higher than that which had been previously obtained, emphasises the turbulent and fractal structure of the ISM on the small scale, resulting from the dynamical feedback of the star formation processes with the ISM. We also have done a widefield panoramic survey of H$\alpha$ emission from the Magellanic Clouds with an imager mounted on the 16-inch telescope at Siding Spring Observatory. This survey produced H$\alpha$ images which are equal to the ATCA survey in area coverage and resolution. This survey allows us to produce a continuum-subtracted image of the entire LMC. In contrast with its appearance in the H$\alpha$ image, the LMC is remarkably symmetric in H I on the largest scales, with the bulk of the H I residing in a disk of diameter 8. $^{\circ}4$ (7.3 kpc) and a spiral structure is clearly seen. The structure of the neutral atomic ISM in the LMC is dominated by H I filaments combined with numerous shells and holes.