• Title/Summary/Keyword: fourth-order cumulants

Search Result 4, Processing Time 0.02 seconds

A Study on Blind Channel Equalization Based on Higher-Order Cumulants

  • Han, Soo-Whan
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.6
    • /
    • pp.781-790
    • /
    • 2004
  • This paper presents a fourth-order cumulants based iterative algorithm for blind channel equalization. It is robust with respect to the existence of heavy Gaussian noise in a channel and does not require the minimum phase characteristic of the channel. In this approach, the transmitted signals at the receiver are over-sampled to ensure the channel described by a full-column rank matrix. It changes a single-input/single-output (SISO) finite-impulse response (FIR) channel to a single-input/multi-output (SIMO) channel. Based on the properties of the fourth-order cumulants of the over-sampled channel outputs, the iterative algorithm is derived to estimate the deconvolution matrix which makes the overall transfer matrix transparent, i.e., it can be reduced to the identity matrix by simple reordering and scaling. Both a closed-form and a stochastic version of the proposed algorithm are tested with three-ray multi-path channels in simulation studies, and their performances are compared with a method based on conventional second-order cumulants. Relatively good results are achieved, even when the transmitted symbols are significantly corrupted with Gaussian noise.

  • PDF

Blind channel equalization using fourth-order cumulants and a neural network

  • Han, Soo-whan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • This paper addresses a new blind channel equalization method using fourth-order cumulants of channel inputs and a three-layer neural network equalizer. The proposed algorithm is robust with respect to the existence of heavy Gaussian noise in a channel and does not require the minimum-phase characteristic of the channel. The transmitted signals at the receiver are over-sampled to ensure the channel described by a full-column rank matrix. It changes a single-input/single-output (SISO) finite-impulse response (FIR) channel to a single-input/multi-output (SIMO) channel. Based on the properties of the fourth-order cumulants of the over-sampled channel inputs, the iterative algorithm is derived to estimate the deconvolution matrix which makes the overall transfer matrix transparent, i.e., it can be reduced to the identity matrix by simple recordering and scaling. By using this estimated deconvolution matrix, which is the inverse of the over-sampled unknown channel, a three-layer neural network equalizer is implemented at the receiver. In simulation studies, the stochastic version of the proposed algorithm is tested with three-ray multi-path channels for on-line operation, and its performance is compared with a method based on conventional second-order statistics. Relatively good results, withe fast convergence speed, are achieved, even when the transmitted symbols are significantly corrupted with Gaussian noise.

A NOTE ON SOME HIGHER ORDER CUMULANTS IN k PARAMETER NATURAL EXPONENTIAL FAMILY

  • KIM, HYUN CHUL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.157-160
    • /
    • 1999
  • We show the cumulants of a minimal sufficient statistics in k parameter natural exponential family by parameter function and partial parameter function. We nd the cumulants have some merits of central moments and general cumulants both. The first three cumulants are the central moments themselves and the fourth cumulant has the form related with kurtosis.

  • PDF

Blind Neural Equalizer using Higher-Order Statistics

  • Lee, Jung-Sik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.174-178
    • /
    • 2002
  • This paper discusses a blind equalization technique for FIR channel system, that might be minimum phase or not, in digital communication. The proposed techniques consist of two parts. One is to estimate the original channel coefficients based on fourth-order cumulants of the channel output, the other is to employ RBF neural network to model an inverse system fur the original channel. Here, the estimated channel is used as a reference system to train the RBF. The proposed RBF equalizer provides fast and easy teaming, due to the structural efficiency and excellent recognition-capability of R3F neural network. Throughout the simulation studies, it was found that the proposed blind RBF equalizer performed favorably better than the blind MLP equalizer, while requiring the relatively smaller computation steps in tranining.