• Title/Summary/Keyword: four-bundled conductors

Search Result 2, Processing Time 0.015 seconds

A Study on a Power Transmission Line Mobile Robot for Bundled Conductor Navigation

  • Seok, Kwang-Ho;Kim, Yoon Sang
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.155-161
    • /
    • 2019
  • We introduces a mobile robot that can navigate on a power transmission line arranged in bundled conductors. The designs of the proposed robot are performed for navigation on bundled conductors, and the navigation method for bundled conductors and obstacle avoidance are presented. The robot consists of 13 degrees of freedom (DOF) with a symmetrical structure for the left and right parts, including the four wheel joints. The navigation method is designed using a combination of three motion primitives such as linear motion of counterbalancing box, linear motion of robot arm, and rotational motion of wheel part. To examine the performance of the proposed robot, navigation simulations are conducted using $ADAMS^{TM}$. The robot navigations were simulated on obstacle environments that consisted of two- and four-conductor bundles. Based on the simulation results, the performance of the proposed robot was reviewed through the analysis of the trajectories of end-effectors. We confirmed that the proposed robot was capable of achieving optimal navigation on bundled conductors that included obstacles.

Field Observation and Analysis of Wind-Induced Vibrations in Four-Bundled Conductor Transmission Lines

  • Sohn, Hong-Kwan;Lee, Hyung-Kwon;Chu, Jang-Hee;Lee, Dong-Il;Lee, Eun-Woong
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.109-114
    • /
    • 2003
  • This paper presents observations made on four-bundled conductor transmission lines concerning the behavior of conductors under the effect of natural winds. To know the wind-induced vibration status and how to control it, wind-induced vibrations have been recorded and analyzed from the real transmission lines. From the field observation and analysis results, subspan oscillation was found to be the main type of vibration. In addition, the data also revealed some common characteristics of the observation sites with high maintenance rates. The results will be used in controlling the subspan oscillations and protecting the conductors.