• Title/Summary/Keyword: four season model

Search Result 83, Processing Time 0.023 seconds

Application of Representative $PM_{2.5}$ Source Profiles for the Chemical Mass Balance Study in Seoul

  • Kang, Choong-Min;Kang, Byung-Wook;SunWoo, Young;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.32-43
    • /
    • 2008
  • Source samples were collected to construct source profiles for 9 different source types, including soil, road dust, gasoline/diesel-powered vehicles, a municipal incinerator, industrial sources, agricultural/biomass burning, marine aerosol, and a coal-fired power plant. Seasonal profiles for 'Chinese aerosol', aerosols derived from the urban area of China, were reconstructed from seasonal $PM_{2.5}$ compositions reported in Beijing, China. Ambient $PM_{2.5}$ at a receptor site was also measured during each of the four seasons, from April 2001 to February 2002, in Seoul. The Chemical Mass Balance receptor model was applied to quantify source contributions during the study period using the estimated source profiles. Consequently, motor vehicle exhaust (33.0%), in particular 23.9% for diesel-powered vehicles, was the largest contributor affecting the $PM_{2.5}$ levels in Seoul, followed by agricultural/biomass burning (21.5%) and 'Chinese aerosol' (13.1%), indicating contributions from long-range transport. The largest contributors by season were: for spring, 'Chinese aerosol' (31.7%); for summer, motor vehicle exhaust (66.9%); and for fall and winter, agricultural/biomass burning (31.1% and 40.1%, respectively). These results show different seasonal patterns and sources affecting the $PM_{2.5}$ level in Seoul, than those previously reported for other cities in the world.

A study on the stochastic generation of annual runoff (연유출량의 추계학적 모의발생에 관한 연구)

  • 이순혁;박명근;맹승진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.2
    • /
    • pp.31-40
    • /
    • 1995
  • This study was conducted to get best fitting frequency distribution for the annual run- off and to simulate long series of annual flows by single-season first order Markov Model with comparison of statistical parameters which were derived from observed and synthetic flows at four watersheds in Seom Jin and Yeong San river systems. The results summarized through this study are as follows. 1. Hydrologic persistence of observed flows was acknowledged by the correlogram analysis. 2. A normal distribution of the annual runoff for the applied watersheds was confirmed as the best one among others by Kolmogorov-Smirnov test. 3. Statistical parameters were calculated from synthetic flows simulated by normal dis- tribution. In was confirmed that mean and standard deviation of simulated flows are much closer to those of observed data than except coefficient of skewness. 4. Hydrologic persistence between observed flows and synthetic flows simulated was also confirmed by the correlogram analysis. 5. It is to be desired that generation technique of synthetic flow in this study would be compared with other simulation techniques for the objective time series.

  • PDF

A Method of Improving Air Quality Impact Assessment and Prediction (대기질 영향평가와 예측방법에 대한 개선방향)

  • Park, Jong-Kil;Won, Gyeong-Mee;Kim, Seong-Su
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.77-88
    • /
    • 1994
  • When we conduct environmental impact assessment, main contents consist of summary, project outline, environmental conditions, environmental impacts due to the project, mitigation devices, and alternative measures of harmful impact on environment. In this Paper, to understand how they really conduct air quality impact assessment and prediction and examine their effectiveness, we considered the provisions and actual case of environmental impact assessment in Korea with that in Japan. As a result, we propose a method of improving air quality impact assessment and Prediction, such as reflection of the result in environmental impact assessment, detailed assessment focused on relatively important environmental impact elements, field measurement investigation over four season and seven sucessive days, the uniformity of units, the proper model development to predict environmental concentration and a biennial environmental impact assessment for ex post management.

  • PDF

Uniformity Assessment of Soil Moisture Redistribution for Drip Irrigation (점적관개에 따른 토양수분 재분배 균일성 평가)

  • Choi, Soon-Kun;Choi, Jin-Yong;Nam, Won-Ho;Hur, Seung-Oh;Kim, Hak-Jin;Chung, Sun-Ok;Han, Kyung-Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.19-28
    • /
    • 2012
  • Greenhouse cultivation has been increasing for high quality and four season crop production in South Korea. For the cultivation in a greenhouse, maintaining adequate soil moisture at each crop growth stage is quite important for yield stability and quality while the behavior of moisture movement in the soil has complexity and adequate moisture conditions for crops are vary. Drip irrigation systems have been disseminated in the greenhouse cultivation due to advantages including irrigation convenience and efficiency without savvy consideration of the soil moisture redistribution. This study aims to evaluate soil moisture movement of drip irrigation according to the soil moisture uniformity assessment. Richards equation and finite difference scheme were adapted to simulate soil moisture behavior in soil. Soil container experiment was conducted and the model was validated using the data from the experiment. Two discharge rate (1 ${\ell}/hr$ and 2 ${\ell}/hr$) and three spaces between the emitters (10 cm, 20 cm, and 30 cm) were used for irrigation system evaluation. Christiansen uniformity coefficient was also calculated to assess soil moisture redistribution uniformity. The results would propose design guidelines for drip irrigation system installation in the greenhouse cultivation.

A Study on the Evaluation of Woody Tree Vitality of Artificial Ground: Case Study of Seoullo 7017

  • Park, Seong-uk;Hong, Youn-Soon
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.1
    • /
    • pp.85-94
    • /
    • 2021
  • Background and objective: This study examined, compared, and analyzed the tree vitality of the trees growing on the artificial ground of Seoullo 7017 that transformed the overpass that was to be demolished into a "sky garden" using portable tree pots. Methods: Based on the summer season when the metabolic activity of plants is most active, this study measured the cambial electrical resistance in four directions(east, west, south and north), using the Shigometer (model OZ-93, Osmose) and compared the location and analysis of pots according to their means and standard errors. Results: Meanwhile, according to the analysis, vitality was relatively superior in pots with a big diameter, trees planted individually than in groups, trees of the ramp section rather than the bridge section, and in the southwest direction of the cambium. Conclusion: This study revealed the improper condition of the planting plan and implementation on the site, where various species of trees are displayed in a poor environment. Despite the significant assessment of the vitality of various trees introduced within Seoullo 7017 for the first time, this study is limited in that the data used were measured only once in summer. In this regard, it raised the need for continuous interest in and monitoring of a special plant environment and development of proper maintenance and management techniques, along with follow-up research on seasonal and temperature conditions, soil moisture and root development conditions to supplement this research.

A Study on the Potential of Agricultural Water and Environmental Flow Supply according to Regulating Lower Control Storage Rate for the Irrigation Reservoir (농업용 저수지의 하한 관리 저수율 설정에 따른 농업용수 및 환경용수 공급 가능성 고찰)

  • Jeong, Jiyeon;Jeung, Minhyuk;Beom, Jina;Park, Minkyeong;Lee, Jaenam;Yoo, Seung-Hwan;Yoon, Kwang-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.21-33
    • /
    • 2023
  • While the main purpose of irrigation reservoirs is to supply agricultural water, the needs of environmental flow and flood control has been expanded. The agricultural reservoirs have been operated in the form of carry-over system until now. Therefore, the supply of agricultural water is difficult when the storage rate is not sufficiently secured after large volume of irrigation. In addition, there are regulation of the upper storage rate for some large reservoirs during the flood season, but lower storage rate is not regulated. Accordingly, this study aims to evaluate the capacity of agricultural water and environmental flow supply by setting the management lower storage rate of reservoir. The changes in the supply of agricultural and environmental flow was simulated according to the three different regulating lower storage rate scenarios. As a result, it was judged effective in terms of water supply managing the lower storage rate up to 30% when the initial storage rate of farming period is above annual average for the Naju reservoir considering existing water management practice. If the lower storage rate would have been controlled above 30%, the supply of agricultural water might be increased and non-effective discharge amount would be decreased compared to other scenarios during dry period of 2016-2018.

Monitoring Onion Growth using UAV NDVI and Meteorological Factors

  • Na, Sang-Il;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.306-317
    • /
    • 2017
  • Unmanned aerial vehicles (UAVs) became popular platforms for the collection of remotely sensed data in the last years. This study deals with the monitoring of multi-temporal onion growth with very high resolution by means of low-cost equipment. The concept of the monitoring was estimation of multi-temporal onion growth using normalized difference vegetation index (NDVI) and meteorological factors. For this study, UAV imagery was taken on the Changnyeong, Hapcheon and Muan regions eight times from early February to late June during the onion growing season. In precision agriculture frequent remote sensing on such scales during the vegetation period provided important spatial information on the crop status. Meanwhile, four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.) and fresh weight (F.W.) were measured for about three hundred plants (twenty plants per plot) for each field campaign. Three meteorological factors included average temperature, rainfall and irradiation over an entire onion growth period. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, $NDVI_{UAV}$ and rainfall in the model explain 88% and 68% of the P.H. and F.W. with a root mean square error (RMSE) of 7.29 cm and 59.47 g, respectively. And $NDVI_{UAV}$ in the model explain 43% of the L.N. with a RMSE of 0.96. These lead to the result that the characteristics of variations in onion growth according to $NDVI_{UAV}$ and other meteorological factors were well reflected in the model.

Chemical Oxygen Demand (COD) Model for the Assessment of Water Quality in the Han River, Korea (한강수질 평가를 위한 COD (화학적 산소 요구량) 모델 평가)

  • Kim, Jae Hyoun;Jo, Jinnam
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.4
    • /
    • pp.280-292
    • /
    • 2016
  • Objectives: The objective of this study was to build COD regression models for the Han River and evaluate water quality. Methods: Water quality data sets for the dry season (as of January) during a four-year period (2012-2015) were collected from the database of the Han River automatic water quality monitoring stations. Statistical techniques, including combined genetic algorithm-multiple linear regression (GA-MLR) were used to build five-descriptor COD models. Multivariate statistical techniques such as principal component analysis (PCA) and cluster analysis (CA) are useful tools for extracting meaningful information. Results: The $r^2$ of the best COD models provided significant high values (> 0.8) between 2012 and 2015. Total organic carbon (TOC) was a surrogate indicator for COD (as COD/TOC) with high reliability ($r^2=0.63$ in 2012, $r^2=0.75$ for 2013, $r^2=0.79$ for 2014 and $r^2=0.85$ for 2015). The ratios of COD/TOC were calculated as 2.08 in 2012, 1.79 in 2013, 1.52 and 1.45 in 2015, indicating that biodegradability in the water body of the Han River was being sustained, thereby further improving water quality. The BOD/COD ratio supported these findings. The cluster analysis revealed higher annual levels of microorganisms and phosphorous at stations along the Hangang-Seoul and Hantangang areas. Nevertheless, the overall water quality over the last four years showed an observable trend toward continuous improvement. These findings also suggest that non-point pollution control strategies should consider the influence of upstreams and downstreams to protect water quality in the Han River. Conclusion: This data analysis procedure provided an efficient and comprehensive tool to interpret complex water quality data matrices. Results from a trend analysis provided much important information about sources and parameters for Han River water quality management.

Characteristics of Algal Abundance and Statistical Analysis of Environmental Factors in Lake Paldang (팔당호 조류발생 특성 및 수질환경인자의 통계적 분석)

  • Park, Hae-Kyung;Lee, Hyun-Ju;Kim, Eun-Kyung;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.584-594
    • /
    • 2005
  • The spatio-temporal abundance pattern of algae in Lake Paldang from 2002 to 2004 was investigated. The concentration of chlorophyll a representing algal biomass had fluctuated intensively throughout the year. Among three years, the highest algal biomass was shown in 2002, and typical growth peak of concentration of chlorophyll a was occurred in spring and autumn. There had been frequent rainfall in spring drought period in 2003 and it resulted in the decrease of the algal biomass. The distribution pattern of four algal groups on the surface water of Lake Paldang showed different abundance by season and by water area. In particular, different algal growth characteristics by water areas were observed. Influences of various environmental parameters on algal abundance in four water areas of Lake Paldang were analyzed statistically. From the results of Peason correlation analysis, it was understood that the kinds and affects of environmental parameters were different according to water areas and seasons. Based on the factors analysis of environmental parameters on the concentration of chlorophyll a, stepwise regression models whose independent variables were the factors produced by factor analysis and dependent variable was the concentration of chlorophyll a were derived by water areas and seasons. As a whole, factors related with organics and photosynthesis were revealed to have high affects to algal abundance, whereas limiting nutrients such as phosphorus and nitrogen showed little affect in Lake Paldang.

Identification of Bird Community Characteristics by Habitat Environment of Jeongmaek Using Self-organizing Map - Case Stuty Area Geumnamhonam and Honam, Hannamgeumbuk and Geumbuk, Naknam Jeongmaek, South Korea - (자기조직화지도를 활용한 정맥의 서식지 환경에 따른 조류 군집 특성 파악 - 금남호남 및 호남정맥, 한남금북 및 금북정맥, 낙남정맥을 대상으로 -)

  • Hwang, Jong-Kyeong;Kang, Te-han;Han, Seung-Woo;Cho, Hae-Jin;Nam, Hyung-Kyu;Kim, Su-Jin;Lee, Joon-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • This study was conducted to provide basic data for habitat management and preservation of Jeongmaek. A total of 18 priority research areas were selected with consideration to terrain and habitat environment, and 54 fixed plots were selected for three types of habits: development, valley, and forest road and ridge. The survey was conducted in each season (May, August, and October), excluding the winter season, from 2016 to 2018. The distribution analysis of birds observed in each habitat type using a self-organizing map (SOM) classified them into a total of four groups (MRPP, A=0.12, and p <0.005). The comparative analysis of the number of species, the number of individuals, and the species diversity index for each SOM group showed that they were all the highest in group III (Kruskal-Wallis, the number species: x2 = 13.436, P <0.005; the number of individuals: x2 = 8.229, P <0.05; the species diversity index: x2 = 17.115, P <0.005). Moreover, the analysis by applying the land cover map to the random forest model to examine the index species of each group and identify the characteristics of the habitat environment showed a difference in the ratio of the habitat environment and the indicator species among the four groups. The index species analysis identified a total of 18 bird species as the indicator species in three groups except for group II. When applying the random forest model and indicator species analysis to the results of classification into four groups using the SOM, the composition of the indicator species by the group showed a correlation with the habitat characteristics of each group. Moreover, the distribution patterns and densities of observed species were clearly distinguished according to the dominant habitat for each group. The results of the analysis that applied the SOM, indicator species, and random forest model together can derive useful results for the characterization of bird habitats according to the habitat environment.