• 제목/요약/키워드: four conditions

검색결과 4,549건 처리시간 0.041초

고온기 송풍 덕트 적용 수직·수경재배 참외의 엽령별 광합성과 착과 절위별 과실 특성 (Photosynthesis by Leaf Age and Fruit Characteristics by Fruiting Nodes in Vertical and Hydroponic Cultivation of Oriental Melon Applied with Air Duct for High-temperature Season)

  • 홍영신;박소현;윤성욱;권진경;이시영;이상규;문종필;장재경;배효준;황정수
    • 생물환경조절학회지
    • /
    • 제32권2호
    • /
    • pp.89-96
    • /
    • 2023
  • 본 연구는 송풍 덕트을 이용하여 고온기 냉방과 수직·수경재배 시 잎의 엽령별 광합성능력과 착과 절위별 과실 특성을 분석하여 새로운 재배법 개발에 활용하고자 하였다. 참외 잎의 엽령은 3일 간격으로 광합성능력을 측정하였고, 착과 절위는 아들덩굴 5마디 이하에서 발생되는 손자덩굴을 모두 제거하는 처리(대조구), 아들덩굴 1마디에서 발생되는 손자덩굴에 착과 처리(저절위)를 하였다. 수직재배 시 줄기 유인을 아래에서 위로 유인하는 처리(상향), 위에서 아래로 유인하는 처리(하향)로 하였다. 광합성속도는 잎 전개 후부터 꾸준하게 증가하여 10일에 20.8μmol CO2·m-2·s-1이었고, 19일에 21.3μmol CO2·m-2·s-1로 조금씩 높아지더니, 32일에 23.4μmol CO2·m-2·s-1로 높았다. 그 이후 38일에는 16.8μmol CO2·m-2·s-1 낮아지고, 47일에는 7.6μmol CO2·m-2·s-1로 크게 낮아졌다. 착과 절위별 과실 특성은 저절위(상향), 저절위(하향), 대조구(상향), 대조구(하향)의 과장은 12.6-13.4cm로 유의성이 있었으며, 과폭은 7.9-8.6cm으로 유의성이 없었다. 과중은 저절위(상향)과 대조구(하향)에 비교하여 저절위(하향) 535.8g과 대조구(상향) 503.8g으로 유의성이 높았다. 당도는 12.9-15.7°Brix로 저절위(상향)과 대조구(하향)의 유의성이 저절위(상향)과 대조구(하향) 보다 높았다. 참외 고온기 수직·수경재배 시 참외 잎의 광합성능력은 잎 전개 후 32일까지는 좋지만, 그 이후에는 속도가 떨어지는 것으로 나타났다. 과실품질은 저절위 착과 시에도 과실비대와 당도가 떨어지지 않기 때문에 저절위에 착과하여 참외을 재배할 수 있음을 확인하였다. 본연구결과는 참외의 고온기 수직·수경재배법 개발에 저절위 착과와 적엽에 활용할 수 있을 것으로 판단된다.

하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법 (Vegetation classification based on remote sensing data for river management)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.6-7
    • /
    • 2021
  • 하천에서의 식생 활착은 지형, 생태, 수리학 등의 학문 분야 뿐만 아니라 하천 관리 실무에서도 중요한 이슈 중에 하나로서 하천 식생 문제는 홍수 관리와 생태계 보전이라는 상반되는 가치의 조화에 직결된다. 국내에서는 2000년대 이후 댐 하류 조절하천, 부영화된 소규모 지류하천, 4대강 사업 대상지 고수부지 등 다양한 조건에서 하천 식생 활착과 육역화 문제가 지속적으로 제기되어 왔다. 이러한 배경에서 본 연구에서는 하천 내의 식생 분포를 원격탐사 자료를 기반으로 분류하는 기법을 제안하고 이를 내성천에 적용한 결과를 제시하였다. 내성천은 2014년부터 최근까지 지속적으로 식생 활착이 발생하여 하천 경관이 변화한 대표적인 사례 하천이다. 원격탐사 자료는 유럽항공우주국(ESA)에서 운영 중이며, Google Earth Engine에서 제공하는 Sentinel 1, 2 위성 영상을 사용하였다. 지상 참값(ground truth)으로는 수역, 사주, 초본, 목본 등을 포함한 8가지 유형으로 구분되어 있는 2016년 내성천 지표 피복 자료를 사용하였다. 분류를 위한 방법은 머신러닝 알고리듬의 하나인 랜덤 포레스트 분류 기법을 사용하였으며, 미리 선정된 10개 폴리곤 영역으로부터 1,000개의 표본을 추출하여 1/2씩 나누어 훈련 및 검증 자료로 사용하였다. 검증 자료 기반의 정확도는 82~85 %로 나타났다. 훈련을 통해 수립한 모형을 2016~2020년 자료에도 적용하여 연도에 따른 식생역의 변화 과정을 제시하였다. 본 논문의 기술적 한계와 개선 방안을 고찰하였다. 이 기법은 정량적인 식생 분포를 제공함으로써 하천에서의 홍수위 계산, 식생-수리모델링 등의 기술 분야 뿐만 아니라 간벌이나 하천 식생 회춘 유도(rejuvenation)과 같은 식생의 실무적 관리 측면에서도 활용도가 클 것으로 판단된다.

  • PDF

국내 초령목 개체군의 분포특성과 보전지위평가 (Distributional Characteristics of the Population and Assessment of the Conservation Status of Michelia Compressa on Korea)

  • 김종갑;김대신;김수경;정현미;송영기;손성원;고정군
    • 한국환경생태학회지
    • /
    • 제37권3호
    • /
    • pp.182-191
    • /
    • 2023
  • 본 연구는 국내 희귀 및 멸종위기야생식물 II 급인 초령목의 자생지에서의 분포와 생육 특성을 파악하고 보전지위를 평가하고자 실시하였다. 초령목은 흑산도와 제주도에서 자생지가 확인되었는데, 4개의 개체군으로 구분되었다. 자생지에서 314개체가 확인되었으며, 이중 약 45.9%(144개체)가 해발고도 401m~500m 범위에 분포하였다. 수고는 평균 2.7(±4.8)m였으며, 흉고직경은 12.6(±13.9)cm였고 분지는 평균 1.0(±0.5)개로 나타났다. 초령목의 어린나무 개체들은 어미목에서 반경 30m 이내에 54.3%가 분포하였고, 31m~40m 사이에서 25.8%가 분포하였으며, 반경 60m 이내에 대부분(90.1%)이 확인되었다. 초령목의 어린나무 개체들이 일부 성숙목 주변에서도 확인되지 않고, 극히 한정된 지역에서만 출현하는 것은 자생지 환경뿐만 아니라 생육조건과 관계가 있는 것으로 판단된다. 초령목의 종자 산포는 천연하종과 더불어 조류가 관여하는 것으로 추정되는데, 이는 천연하종의 범위 이상에서 발견되는 자생지는 조류가 쉴 수 있는 물웅덩이가 근처에 존재하는 공통적인 특징을 지녔기 때문이다. 초령목의 지역 및 국가수준의 IUCN 적색목록 평가기준의 범주는 위급(Critically Endangered) 범주에 해당하며 국내 개체군은 "CR B2ab(v); C2a(i); D" 범주로 평가되는 것으로 나타났다.

심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구 (Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network)

  • 엄태윤;김광년;조용한;송근용;이윤정;이윤곤
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.207-221
    • /
    • 2023
  • 본 연구는 천리안위성 2A호의 Level 1B (L1B) 정보를 사용해 지상기온을 추정하기 위한 심층신경망(deep neural network, DNN) 기법을 적용하고 검증을 실시하였다. 지상기온은 지면으로부터 1.5 m 높이의 대기온도로 일상생활뿐만 아니라 폭염이나 한파와 같은 이슈에 밀접한 관련을 갖는다. 지상기온은 지표면 온도와 대기의 열 교환에 의해 결정되므로 위성으로부터 산출된 지표면 온도(land surface temperature, LST)를 이용한 지상기온 추정 연구가 활발하였다. 하지만 천리안위성 2A호 산출물 LST는 Level 2 정보로 구름영향이 없는 픽셀만 산출되는 한계가 있다. 따라서 본 연구에서는 Advanced Meteorological Imager 센서에서 측정된 원시데이터에 오직 복사와 위치보정을 마친 L1B 정보를 사용해 지상기온을 추정하기 위한 DNN 모델을 제시하고 그 성능을 가늠하기 위해 위성 LST와 지상관측 기온 사이의 선형회귀모델을 기준모델로 사용하였다. 연구기간은 2020년부터 2022년까지 3년으로 평가기간 2022년을 제외한 기간은 훈련기간으로 설정했다. 평가지표는 기상청의 종관기상관측소에서 정시에 관측된 기온정보로 평균 제곱근 오차를 사용하였다. 관측지점에서 추출된 픽셀 중 손실된 픽셀의 비율은 LST는 57.91%, L1B는 1.63%를 보였으며 LST의 비율이 낮은 이유는 구름의 영향 때문이다. 제안한 DNN의 구조는 16개 L1B 자료와 태양정보를 입력 받는 층과 은닉층 4개, 지상기온 1개를 출력하는 층으로 구성하였다. 연구결과 구름의 영향이 없는 경우 DNN 모델이 root mean square error (RMSE) 2.22℃로 기준모델의 RMSE 3.55℃ 보다 낮은 오차를 보였고, 흐린 조건을 포함한 총 RMSE는 3.34℃를 나타내면서 구름의 영향을 제거할 수 있을 것으로 보였다. 하지만 계절과 시간에 따른 분석결과 여름과 겨울철에 모델의 결정계수가 각각 0.51과 0.42로 매우 낮게 나타났고 일 변동의 분산이 0.11과 0.21로 나타났다. 가시채널을 고려해 태양 위치정보를 추가한 결과에서 결정계수가 0.67과 0.61로 개선되었고 시간에 따른 일 변동의 분산도 0.03과 0.1로 감소하면서 모든 계절과 시간대에 더 일반화된 모델을 생성할 수 있었다.

중소기업의 스마트팩토리 도입의도에 영향을 미치는 요인에 관한 연구 - 정부지원기대와 과업기술적합도를 포함하여 (Factors Affecting Intention to Introduce Smart Factory in SMEs - Including Government Assistance Expectancy and Task Technology Fit -)

  • 김정래
    • 벤처혁신연구
    • /
    • 제3권2호
    • /
    • pp.41-76
    • /
    • 2020
  • 본 연구는 스마트팩토리 도입의도에 영향을 미치는 요인을 실증 분석을 통해 확인하였다. 4차산업혁명의 핵심분야인 스마트팩토리 도입에 있어서 어떤 요인이 중요하게 영향을 미치는가에 대한 연구이며, 아직까지 스마트팩토리 분야에서 기술 수용에 관한 연구가 부족한 상황에서 학술적 실무적 의의가 있다고 믿는다. 정보기술의 수용요인 연구에 설명력이 검증된 통합기술수용이론(UTAUT)을 기반으로 연구를 진행하였으며, UTAUT 이론의 4가지 독립변수인 성과기대, 노력기대, 사회적영향, 촉진조건에 추가로 스마트팩토리의 특성상 중요한 요인으로 예상되는 정부지원기대(Government Assistance Expectancy)를 독립변수에 추가하였다. 또한 스마트팩토리 기술수용의 기술적인 요인을 확인하고자 과업기술적합도(Task Technology Fit)변수 추가하여 스마트팩토리 도입의도에 미치는 영향관계를 실증 분석하였다. 또한 과업기술적합도의 선행변수인 과업특성(Task Characteristics)과 기술특성(Technology Characteristics)이 과업기술적합도에 어떠한 영향을 미치는지에 대한 분석도 진행하였다. 새로운 기술에 대한 신뢰(Trust)의 정도가 기술의 수용에 있어 매우 중요한 영향을 미칠 것으로 예상되어 신뢰를 매개변수로 추가하였다. 마지막으로 새로운 정보기술에 의한 혁신이 사용자에게 불가피하게 거부감을 야기할 수 있다는 선행연구들을 토대로 혁신저항(Innovation Resistance)을 조절역할을 하는 연구변수에 추가하여 실증적 검증을 진행하였다. 연구 결과 성과기대, 사회적 영향, 정부지원기대, 과업기술적합도는 스마트팩토리 도입의도에 정(+)의 영향을 미쳤다. 영향력의 크기는 정부지원기대(β=.487) > 과업기술적합도(β=.218) > 성과기대(β=.205) > 사회적영향(β=.204) 순으로 나타났다. 과업특성과 기술특성은 모두 과업기술적합도에 정(+)의 영향이 확인되었으며, 과업특성(β=.559)이 기술특성(β=.328)보다 과업기술적합도에 더 영향이 큰 것으로 나타났다. 신뢰에 대한 매개 효과 검정에서 6개 독립변수 각각과 스마트팩토리 도입의도 간에 신뢰의 통계적으로 유의미한 매개역할은 확인되지 않았다. 혁신저항의 조절효과 검정을 통해, 혁신저항이 정부지원기대와 스마트팩토리 도입의도 간 정(+)의 조절역할을 하는 것으로 나타났다. 즉 혁신저항이 크면 클수록 정부지원기대가 스마트팩토리 도입의도에 미치는 영향력이 혁신저항이 적은 경우보다 커지는 것으로 나타났다.

YOLO를 이용한 SAR 영상의 선박 객체 탐지: 편파별 모델 구성과 정확도 특성 분석 (Ship Detection from SAR Images Using YOLO: Model Constructions and Accuracy Characteristics According to Polarization)

  • 임윤교;윤유정;강종구;김서연;정예민;최소연;서영민;이양원
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.997-1008
    • /
    • 2023
  • 해상의 선박탐지는 다양한 방법으로 수행될 수 있는데, 위성은 광역적인 감시가 가능하고, 특히 합성개구레이더(Synthetic Aperture Radar, SAR) 영상은 주야간 및 전천후로 활용될 수 있다. 본 연구에서는 SAR 영상으로부터 효율적인 선박 탐지 방법을 제시하기 위하여, Sentinel-1 영상에 You Only Look Once Version 5 (YOLOv5) 모델을 적용하여 선박 탐지를 수행하고, 편파별 개별 모델과 통합 모델의 차이 및 편파별 정확도 특성을 분석하였다. 파라미터가 작고 가벼운 YOLOv5s와 파라미터가 많지만 정확도가 높은 YOLOv5x 두가지 모델에 대하여 각각 (1) HH, HV, VH, VV 각 편파별로 나누어 학습/검증 및 평가 그리고 (2) 모든 편파의 영상을 사용하여 학습/검증 및 평가를 실시한 결과, 네 가지 실험에서 모두 0.977 ≤ AP@0.5 ≤ 0.998의 비슷하면서 매우 높은 정확도를 나타냈다. 이러한 결과를 현업시스템의 관점에서 보면, 가벼운 YOLO 모델(YOLOv5s, YOLOv8s 등)로 4개 편파 통합 모델을 구축하는 것이 실시간 선박탐지에 효과적임을 시사하는 것이다. 이 실험에서 사용한 영상은 19,582장이었지만, Sentinel-1 이외에도 Capella, ICEYE 등 다른 SAR 영상을 추가적으로 활용한다면, 보다 더 유연하고 정확한 선박 탐지 모델이 구축될 수 있을 것이다.

기후변화의 적응과 연계한 영산강 수질개선대책 개발 (Development of Strategies to Improve Water Quality of the Yeongsan River in Connection with Adaptation to Climate Change)

  • 이용운;양원모;송광덕;류용욱;이학영
    • 생태와환경
    • /
    • 제56권3호
    • /
    • pp.187-195
    • /
    • 2023
  • 영산강의 상류에는 4개의 농업용 댐들이 축조되어 있으며 각 댐의 물은 경작지 관개용수로 거의 모두 공급되고 영산강 본류로 방류되지 않고 있다. 또한, 관개용수의 대부분도 사용 후에 영산강으로 회귀하지 않고 격리된 상태의 별도 용수간선을 통하여 영산강 하류까지 흘러가기 때문에 영산강 본류의 유량 부족 문제를 가중시키고 있다. 이러한 원인으로 영산강 유량의 71%가 하수처리수로 채워지는 결과를 초래하였으며 이에 따라 수질뿐 아니라 수생태 건강성도 우리나라 4대강 중 가장 열악한 실정이다. 따라서 본 연구에서는 영산강 수질개선을 위한 여러 가지 시나리오들을 오염삭감과 유량증대를 함께 고려하여 개발하였고 QUAL-MEV를 이용하여 각 시나리오의 장래수질을 예측·분석하였으며, 이러한 연구결과로부터 얻어진 결론은 다음과 같다. 1. 영산강의 수질개선은 오염삭감을 통해 그동안 꾸준히 시행되어 왔으나 이제 한계에 다다르고 있어 앞으로는 오염삭감만이 아니라 유량증대(해수담수화 포함) 방법이 함께 중점 추진되어야 하며, 이러한 경우에는 영산강 수질목표의 달성도 가능하다. 2. BOD는 오염삭감 그리고 T-P는 유량증대의 방법을 통해 크게 개선될 수 있다고 예측되었으므로 수질목표의 달성을 위해 오염삭감과 더불어 유량증대가 함께 도입된다면 이들 상호 간에는 시너지 효과가 크게 작용할 수 있을 것이다. 3. 그러나 유량증대사업의 원활한 추진을 위해서는 투자비용을 늘리는 것도 중요하겠으나 기존의 용수 이해관계자들간에 형성되어 있는 갈등 문제를 협의·해소키 위한 꾸준한 노력이 선행되어야 할 것이다. 4. 댐의 건설, 용수배분 조정 등 강우 유관형 유량증대 방법은 기후변화로 인해 강우가 오랜 기간 발생하지 않으면서 대가뭄이 지속될 경우에 적용의 효용성이 떨어지거나 상실될 수 있으므로 앞으로 비슷한 조건이라면 강우 무관형인 해수담수화시설을 유량증대사업 중 우선 설치대상으로 고려해야 할 것이다. 그 이유는 이러한 시설이 우리나라에서 새로 건설하기 어려운 댐의 용수확보 기능을 대체할 수 있고 대가뭄이 장기간 지속될 경우에 물관련 재해방지도 가능하여 기후변화의 적응시설로서 유용할 수 있기 때문이다.

주요국 AI 창업기업 정책 분석을 통한 국내 시사점 연구 (A Study on the Implications of Korea Through the Policy Analysis of AI Start-up Companies in Major Countries)

  • 김동진;이성엽
    • 벤처창업연구
    • /
    • 제19권2호
    • /
    • pp.215-235
    • /
    • 2024
  • 인공지능(AI) 기술이 미래 국가 경쟁력을 좌우할 핵심 기술로 인식되면서 주요국의 AI 기술 및 산업 육성 정책 경쟁이 치열해지고 있다. 본 연구는 AI 산업 생태계의 근간인 AI 기업 창업에 대한 주요국의 정책을 분석하여 국내 정책 입안에 시사점을 제시하고자 한다. 조사 분석 대상국은 미국 스탠퍼드대학 HAI연구소에서 발표한 『2023 AI Index』의 신규 투자유치 기업 수 최상위 4개 국가와 EU로 선정하였고, 이들 국가와 국내 정책과 비교하여 전략적 함의를 제시하고자 한다. 미국은 2021년 '국가 AI 이니셔티브법(NAIIA)'을 제정했다. 동 법을 통해 AI 연구개발 분야에서 미국의 지속적인 리더십 보장, 공공 및 민간부문에서 신뢰할 수 있는 AI 시스템 개발, 사회 전반에 걸친 AI 시스템 생태계 구축 및 모든 연방기관에서 진행하는 AI 정책에 대한 DB 관리 및 접근성 강화를 추진하고 있다. 중국은 2021년 개최된 제14차 5개년(2021~2025년) 규획 및 2035년 장기 목표에서 7대 전략적 첨단기술 중 첫 번째로 AI를 명시하고 있으며, 2030년까지 글로벌 AI 1위 강국 도약을 목표로 다양한 정책을 전개하고 있다. 영국은 2021년 자금 지원 프로그램'Future Fund Breakthrough'을 통해 획기적인 연구개발 기업에 투자하고 있으며, 2022년 국가 AI 전략의 실행계획 등 AI 선도국 도약을 위한 국가 전략 마련으로 관련 투자를 확대하고 있다. 이스라엘은 혁신청을 중심으로 스타트업 기업에 대한 기술 투자를 지원하고 있는데, 혁신청은 향후 2년~15년 내 성과를 낼 투자와 신기술에 대한 규제 개혁을 주도하고 있다. EU는 중소기업의 AI 활용 지원을 위해 디지털 혁신 허브 네트워크를 강화하고 InvestEU(유럽전략투자기금)와 AI 투자기금을 조성하고 있다. 국내 도입을 검토할 주요국 정책은 국내 ICT 창업기업들로부터 정책 지원 수요가 높은 것으로 나타난 R&D 지원, 사업화 및 판로·마케팅·해외진출 지원 정책자금 지원 측면을 중심으로 도출하였다. 먼저 R&D 지원과 관련하여 미국의 '국가 AI R&D 전략 계획 2023'과 EU의 'AI 혁신 패키지' 검토를 제안한다. 특히 이들 정책은 국가가 관리하는 고성능슈퍼컴퓨터를 R&D에 활용할 수 있도록 하고 있어 AI 창업기업들이 R&D에 들이는 시간과 비용을 절감하는데 크게 도움을 준다. 다음으로 사업화 및 판로·마케팅·해외진출 지원에서는 미국 중소기업청(SBA)의 'SBIR과 STTR 지침' 중 '연방 및 주 기술(Federal And State Technology, FAST) 파트너십 프로그램'과 국방부와 공조하는 '상용화 준비(Commercialization Readiness Pilot. CRP) 프로그램'에 대한 벤치마킹을 제안한다. 이들 프로그램은 정부가 창업기업의 제품과 서비스 상용화를 지원하고 시장 출시 초기에 공공 부문이 적극적으로 구매하는 것을 골자로 한다. 이는 AI 창업기업의 혁신 제품과 서비스가 초기 시장에 안착하는 것은 물론 국내외 시장으로 진출하는 데 중요한 레퍼런스를 제공한다. 세 번째로 정책자금 지원에서는 영국기업은행(BBB)의 공동 투자 프로그램을 제안한다. 영국기업은행은 고성장 혁신기업 투자에 있어 외국계 국부 펀드의 참여도 적극적으로 유도하고 있고, 혁신 창업기업의 자금 조달 라운드에 개인들도 참여할 수 있는 Future Fund: Breakthrough 프로그램을 운영함으로써 AI 창업기업의 자금 마련을 지원하고 있다. 본 연구의 한계로는 제한된 수의 국가 분석, 비교 대상 국가들의 정책환경을 동일 조건 하에서 분석하지 못한 점 등을 들 수 있다.

  • PDF

인공지능 기반 임상의학 결정 지원 시스템 의료기기의 성능 및 안전성 검증을 위한 간 종양 표준 데이터셋 구축 (Construction of a Standard Dataset for Liver Tumors for Testing the Performance and Safety of Artificial Intelligence-Based Clinical Decision Support Systems)

  • 김승섭;이동호;이민우;김소연;신재승;최진영;최병욱
    • 대한영상의학회지
    • /
    • 제82권5호
    • /
    • pp.1196-1206
    • /
    • 2021
  • 목적 간 종양의 조영증강 컴퓨터단층촬영(이하 CT) 영상에 관한 인공지능 알고리즘의 성능과 안전성을 검증할 수 있는 표준 테스팅 데이터셋을 구축하고자 하였다. 대상과 방법 국내 4개 3차 의료기관의 복부 영상의학 전문가 4인이 모여 간 종양 진단 알고리즘의 성능과 안전성을 검증하기 위해 표준 데이터셋이 갖춰야 할 조건을 논의하였다. 각 기관마다 간세포암 75예, 전이암 75예, 그리고 양성 병변 30-50예씩 수집하여, 총 783명 환자의 CT 영상을 대상으로 하였다. 간세포암과 전이암의 경우 병리학적으로 확진된 경우만을 대상으로 하였다. 각 기관의 복부 영상의학 전문가들이 직접 환자의 임상정보를 추출하고 CT 영상에 관한 데이터 라벨링(labeling)을 수기로 시행하였다. CT 영상은 의료용 디지털 영상 및 통신(Digital Imaging and Communications in Medicine, DICOM) 파일로 저장하였다. 결과 복부 영상의학 전문가들이 수기 데이터 라벨링을 시행한 총 783 증례의 간 종양 조영증강 CT의 표준 데이터셋을 구축하였다. 알고리즘의 성능 및 안전성은 병변의 발견 여부 및 특성화의 정확도에 대해 민감도와 특이도를 계산하여 평가할 수 있다. 결론 본 연구에서 구축한 간 종양 조영증강 CT 영상의 표준 데이터셋은 임상의학 결정 지원시스템을 위한 기계학습 기반 인공지능 알고리즘을 평가하는 데에 활용될 수 있다.

Generative Adversarial Network-Based Image Conversion Among Different Computed Tomography Protocols and Vendors: Effects on Accuracy and Variability in Quantifying Regional Disease Patterns of Interstitial Lung Disease

  • Hye Jeon Hwang;Hyunjong Kim;Joon Beom Seo;Jong Chul Ye;Gyutaek Oh;Sang Min Lee;Ryoungwoo Jang;Jihye Yun;Namkug Kim;Hee Jun Park;Ho Yun Lee;Soon Ho Yoon;Kyung Eun Shin;Jae Wook Lee;Woocheol Kwon;Joo Sung Sun;Seulgi You;Myung Hee Chung;Bo Mi Gil;Jae-Kwang Lim;Youkyung Lee;Su Jin Hong;Yo Won Choi
    • Korean Journal of Radiology
    • /
    • 제24권8호
    • /
    • pp.807-820
    • /
    • 2023
  • Objective: To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung disease (ILD) using a deep learning-based automated software. Materials and Methods: This study included patients with ILD who underwent thin-section CT. Unmatched CT images obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium kernels were classified into groups 1-7 according to acquisition conditions. CT images in groups 2-7 were converted into the target CT style (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system. Results: Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The overlap accuracies for quantifying total abnormalities in groups 2-7 improved after CT conversion (original vs. converted: 0.63 vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; P < 0.002 for all). The DSCs of fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 vs. 0.54, P < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly or decreased slightly. The radiologists' scores were significantly higher (P < 0.001) and less variable on converted CT. Conclusion: CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different scan parameters and manufacturers in deep learning-based quantification of ILD.