• Title/Summary/Keyword: foundations

Search Result 1,537, Processing Time 0.023 seconds

Dance Characteristics of Nongsapul-inong-ag (농사풀이농악의 춤특성 - 갑비고차농악을 중심으로 -)

  • Kim, Ki-Hwa;Back, Hyun-Soon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.2
    • /
    • pp.111-122
    • /
    • 2019
  • The advent of the Fourth Industrial Revolution provides new civilized convenience, while the humanistic ecological environment is at stake. Therefore, looking at our culture and arts ecological foundations is ultimately for the preparation of a rich life for the future. Therefore, establishing a desirable cultural ecosystem begins with an enduring tradition of traditional art.This study examined the dancing characteristics of gabbigochanong-ag, which maintains the nongsapul-inong-ag performance pattern. Two field studies and image analysis studies showed that gabbigochanong-ag maintained the characteristics of traditional nong-ag, which strengthened the solidarity and cooperation of village community members and shared community identity. gabbigochanong-ag encourages the participation of the members of the village community through mechanistic dance movements based on soundness, imitative dance movements with minimal movement, repetitive dance movements, and communicative dance movements, As a result of the change, the members of the group were attracted to each other. Although gabbigochanong-ag was not sophisticated or sophisticated, it had a dancing structure that could create aesthetics and marginal aesthetics of slowness from the swiftness and convenience of civilization and bring harmony among the members of the community with warm emotion.

Constructability Evaluation of Seismic Mechanical Splice for Slurry Wall Joint Consisting of Steel Tube and Headed Bars (슬러리월의 내진설계를 위한 강재각관과 확대머리 철근으로 구성된 기계적 이음의 시공성 평가)

  • Park, Soon-Jeon;Kim, Dae-Young;Lim, In-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • South Korea has recently witnessed an increasing number of seismic events, leading to a surge in studies focusing on seismic earth pressures, as well as the attributes of geological layers and ground where foundations are established. Consequently, earthquake-resistant design has become imperative to ensure the safety of subterranean structures. The slurry wall method, due to its superior wall rigidity, excellent water resistance, and minimal noise and vibration, is often employed in constructing high-rise buildings in urban areas. However, given the separation between panels that constitute the wall, slurry walls possess limited resistance to seismic loads in the longitudinal direction. As a solution, several studies have probed into the possibility of interconnecting slurry wall panels to augment their seismic performance. In this research, we developed and evaluated a method for linking slurry wall panels using mechanical joints, including concrete-confined steel pipes and headed bars, through mock-up tests. We also assessed the constructability of the suggested method and compared it with other analogous methods. Any challenges identified during the mock-up test were discussed to guide future research in resolving them. The results of this study aid in enhancing the seismic performance of slurry walls through the development of an interconnected panel method. Further research can build on these findings to address the identified issues and improve the efficacy and reliability of the proposed method.

Risk Assesment of Subsidence which utilized Fuzzy-FMEA (Fuzzy-FMEA를 활용한 지반함몰 위험도 평가)

  • Deacheon Kim;YoungMin Jung;Dongil Shin
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.313-325
    • /
    • 2023
  • Purpose: According to the recent occurrence statistics of ground accidents, ground subsidence and subsidence have become social problems as the frequency has increased centering around the downtown areas. This study tried to clarify risk of detailed factors which have an effect on subsidence. Method: For the study, detailed risk factors of 28 foundations were mainly drawn through the materials, precedent studies, and research reports shown by analyzing JIS' accident cases from 2016 to September 6, 2022 and by taking advice from an excavation expert. And risk was assessed by conducting a survey on 12 subsidence experts from the universities, research institutes, and industries and applying Fuzzy-FMEA to it. Result: It has found that damage of sewer pipes is 24.99% of overall risk, followed by excavation work (17.34%), water pipes (14.84%), and poor compaction (refill) (13.93%). And it has found that risk of damaging utilities (water pipes, sewer pipes, and other utilities) is highest, followed by poor construction works (excavation work, damage of sewer and water pipes, and other utility work) and poor compaction (refill). Conclusion: This shows that risk of subsidence factors judged by experts is similar with JIS' cases of ground subsidence.

Analysis of Failure Behavior of Piles Embedded in Liquefied Soil Deposits (액상화 지반에 근입된 말뚝의 파괴거동 분석)

  • Cho, Chong-Suck;Han, Jin-Tae;Hwang, Jae-Ik;Park, Young-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.123-131
    • /
    • 2006
  • Liquefaction-induced lateral spreading has been the most extensive damage to pile foundations during earthquakes. Several cases of pile failures were reported despite the fact that a large margin of safety factor was employed in their design. In this study, 1-g shaking table tests were performed in order to analyze the failure behavior of piles embedded in liquefied soil deposits by buckling instability. As a result, it can be concluded that the pile subjected to excessive axial loads $(near\;P_{cr})$ can fail easily by buckling instability during liquefaction. When lateral spreading took place in sloping grounds, it was found that lateral loading due to lateral spreading increased lateral deflection of pile and reduced the buckling load. In addition, from the buckling shape of pile, difference between Euler's buckling and pile buckling vat observed. In the case of pile buckling, hinge formed at the middle point of the pile, not at the bottom. And in sloping grounds, location of hinge formation got lower compared with level ground because of the soil movements.

Analysis on the Rigid Connections of the Drilled Shaft with the Cap for Multiple Pile Foundations (현장타설말뚝을 적용한 다주식 기초에서 말뚝과 캡의 강결합에 대한 분석)

  • Cho, Sung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.61-73
    • /
    • 2008
  • Piles of a bridge pier are connected with the column through the pile cap (footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. Connection methods between pile heads and the pile cap are divided into two groups : rigid connections and hinge connections. Domestic design code has been specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However, some specifications prescribe that conservative results through investigations of both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which has high-quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) is unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the large diameter drilled shaft and the pile cap for Incheon Bridge which will be the longest bridge of Korea were investigated through the full modeling for rigid connection conditions.

Comparative Study between Design Methods and Pile Load Tests for Bearing Capacity of Driven PHC Piles in the Nakdong River Delta (낙동강 삼각주에 항타된 PHC말뚝의 지지력을 위한 재하시험과 지지력 공식의 비교연구)

  • Dung, N.T.;Chung, S.G.;Kim, S.R.;Chung, J.G.
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.61-75
    • /
    • 2007
  • Deep foundations have been popularly installed in hard stratum such as gravels or rocks in Korea. However, it is necessary to consider sand or sandy gravel layers that locate at the mid-depths as the bearing stratum of piles in the thick Nakdong River deltaic deposits, as done in the Chaophraya (Bangkok) and Mississippi River deltas. This study was focused on the finding of suitable methods for estimating bearing capacity when driving prestressed high-strength concrete (PHC) piles to a required depth in the deltaic area. Ground investigation was performed at five locations of two sites in the deltaic area. Bearing capacity of the driven piles has been computed using a number of proposed methods such as CPT-based and other analytical methods, based on the ground investigation and comparison one another other. Five PDA (pile driving analyzer) tests were systematically carried out at the whole depths of embedded piles, which is a well-blown useful technique for the purposes. As the results, the bearing capacities calculated by various methods were compared with the PDA and static load testing results. It was found that the shaft resistance is significantly governed by set-up effects and then the long-term value agrees well with that of the $\beta$ method. Also, the design methods for toe resistance were determined based on the SLT result, rather than PDA results that led to underestimation. Moreover, using the CPT results, appropriate methods were proposed for calculating the bearing capacity of the piles in the area.

Reliability Estimation of Static Design Methods for Driven Steel Pipe Piles in Korea (국내 항타강관말뚝 설계법의 신뢰성평가)

  • Huh, Jung-Won;Park, Jae-Hyun;Kim, Kyung-Jun;Lee, Ju-Hyung;Kwak, Ki-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.61-73
    • /
    • 2007
  • As a part of Load and Resistance Factor Design(LRFD) code development in Korea, in this paper an intensive reliability analysis was performed to evaluate reliability levels of the two static bearing capacity methods for driven steel pipe piles adopted in Korean Standards for Structure Foundations by the representative reliability methods of First Order Reliability Method(FORM) and Monte Carlo Simulation(MCS). The resistance bias factors for the two static design methods were evaluated by comparing the representative measured bearing capacities with the design values. In determination of the representative bearing capacities of driven steel pipe piles, the 58 data sets of static load tests and soil property tests were collected and analyzed. The static bearing capacity formula and the Meyerhof method using N values were applied to the calculation of the expected design bearing capacity of the piles. The two representative reliability methods(FORM, MCS) based computer programs were developed to facilitate the reliability analysis in this study. Mean Value First Order Second Moment(MVFOSM) approach that provides a simple closed-form solution and two advanced methods of FORM and MCS were used to conduct the intensive reliability analysis using the resistance bias factor statistics obtained, and the results were then compared. In addition, a parametric study was conducted to identify the sensibility and the influence of the random variables on the reliability analysis under consideration.

Trends in Predicting Groutability Based on Correlation Analysis between Hydrogeological and Rock Engineering Indices: A Review (수리지질 및 암반공학 지수 간 상관분석을 통한 절리암반 내 그라우트 주입성 예측 연구 동향: 리뷰논문)

  • Kwangmin Beck;Seonggan Jang;Seongwoo Jeong;Seungwoo Jason Chang;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.307-322
    • /
    • 2023
  • Rock-mass grouting plays a crucial role in the construction of dams and deep caverns, effectively preventing seepage in the foundations, enhancing stability, and mitigating hazards. Most rock grouting is affected by hydrogeological and rock engineering indices such as rock quality designation (RQD), rock mass quality (Q-value), geological strength index (GSI), joint spacing (Js), joint aperture (Ap), lugeon value (Lu), secondary permeability index (SPI), and coefficient of permeability (K). Therefore, accurate geological analysis of basic rock properties and guidelines for grouting construction are essential for ensuring safe and effective grouting design and construction. Such analysis has been applied in dam construction sites, with a particular focus on the geological characteristics of bedrock and the development of prediction methods for grout take. In South Korea, many studies have focused on grout injection materials and construction management techniques. However, there is a notable lack of research on the analysis of hydrogeological and rock engineering information for rock masses, which are essential for the development of appropriate rock grouting plans. This paper reviews the current state of research into the correlation between the grout take with important hydrogeological and rock engineering indices. Based on these findings, future directions for the development of rock grouting research in South Korea are discussed.

A Servicism Model for Korean (서비스주의 한국인 모델 연구)

  • Hyunsoo Kim
    • Journal of Service Research and Studies
    • /
    • v.11 no.4
    • /
    • pp.21-42
    • /
    • 2021
  • This study was conducted to derive a Korean model that can permanently maintain and develop Korea. After analyzing Korean society, especially modern Korea, which was the foundation of the founding of the Republic of Korea, a Korean model that can lead Korean society as a sustainable society in human society was derived. The situation of Korea and Koreans was analyzed from a fundamental level. We analyzed the root causes of deepening division and conflict and vague concepts of freedom and justice, and presented a Korean model of the Republic of Korea based on the founding ideology and constitutional spirit of the Republic of Korea to solve these problems. The necessary conditions for being a Korean were derived from the founding ideology and constitutional spirit of the Republic of Korea, the indigenous ideology of Korea, and the fashion and lifestyle of Koreans, derived. In addition, basic axioms for the Korean model were presented, and the structure of the Korean model was designed based on this. The Korean model is presented so that Korean society can lead the human society and be happy for a long time. Reflecting the results of in-depth analysis of the ideological foundations of modern Koreans, a new long-term sustainable structure for Koreans with various ideologies to live well together was proposed. The new Korean model was named the service-oriented Korean model. This is because it is a model centered on thorough checks and balances between all opponents, because it is a multidimensional dynamic Korean model rather than a simple linear one-dimensional Korean model, and because it is a Hwajaengtaeguk model that accurately expresses the identity of Koreans. It was proposed as a model for the sustainable development of Korean society. A follow-up study on specific Korean education programs is needed in the future.

Paradigm of the Transformation of Potential-Forming Space Under the Impact of Intellectual-Innovation Determinants

  • Khanin, Semen;Derhaliuk, Marta;Stavroyany, Serhii;Kudlasevych, Olga;Didkivska, Lesia
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.340-346
    • /
    • 2022
  • The article examines the formation of the scientific paradigm of transformation of the potential-forming space of the regional economy under the influence of intellectual and innovative determinants. Based on the study of different scientific views on the nature and properties of potential-forming space through the study of approaches to understanding the concept of "space" clarified the complexity and multifaceted nature of the phenomenon and found that its characteristics are relevant to the industrial development model. It is revealed that the leading modern trends related to the spread of globalization and regionalization, rapid development of information and communication technologies, diffusion of innovations accompany the transition from industrial to post-industrial development and its development, which leads to new development: changes production, nature and relations between business entities, etc. It is proved that under such conditions, the region as a key element of the economic system, acquires a leading role in achieving sustainable and balanced development. These processes significantly affect the potential-forming space of the regional economy under the influence of intellectual and innovative determinants, leading to the need for its transformation and change in accordance with modern realities, which is reflected in thorough research on the formation of scientific paradigm based on the formation of its theoretical foundations and methodological basis. This study reveals the essence, role, functions, structure, process of formation of the scientific paradigm of transformation of the potential-forming space of the regional economy under the influence of intellectual and innovative determinants. It is proved that the formation of the modern scientific paradigm of transformation of the potential-forming space of the regional economy under the influence of intellectual and innovative determinants occurs in the context of building a post-industrial model of development, accompanied by consideration of the region as a spatial object territories from the physical plane to the spatial environment in which the development of human capital, innovation and self-development of the region. Taking into account the above, the article outlines the prerequisites and factors of formation of the scientific paradigm of transformation of the potential-forming space of the regional economy under the influence of intellectual and innovative determinants.