• Title/Summary/Keyword: foundation modulus

Search Result 176, Processing Time 0.024 seconds

Sensitivity Analysis of 3-Dimensional FE Models for Jointed Concrete Pavements (줄눈 콘크리트포장 3차원 유한요소모델의 민간도 분석)

  • Yoo, Taeseok;Sim, Jongsung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.435-444
    • /
    • 2006
  • This paper investigates the effect of 3-dimensional FE models to evaluation results of jointed concrete pavements which is back-calculated by AREA method. Sensitivity of 3-dimensional FE models developed to simulate the behavior of real jointed concrete pavement are analyzed after compared with 2-dimensional FE models using ILLISLAB. In comparison with 2-dimensional models, influence of concrete contraction under loading plate and base layer on surface deflections is more than that of loading configuration. Deflections at 3-dimensional model between linear and nonlinear temperature distribution under same temperature difference are similar, but noticeable differences are investigated in low elastic modulus of foundations. Dynamic deflections under loading plate are larger than static deflections in high elastic modulus of foundation, but smaller in low elastic modulus. Lower dynamic modulus of subgrade reactions are backcalculated by dynamic deflections than by static deflections. But reverse trend is investigated in the backcalculated elastic modulus of concrete which describes trends of the field backcalculation values calculated from AREA method.

Application of the Lateral Subgrade Reaction Modulus in Landing Pier (잔교식 안벽 해석시 수평지반반력계수의 적용)

  • Park, See-Boum;Kim, Ji-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1707-1711
    • /
    • 2008
  • Landing pier is connect from onshore to offshore with bridge type that a coast structure. The sub-structure is consisted of vertical or batter pile and combined reinforced concrete slab. These days useful design method of quay wall of landing pier type for pile foundation analysis abide by approximate depth of pile supported method, "Harbor and port design criterion, 2005 The ministry of land transport and maritime affairs". The approximate depth of pile supported is calculated two kind of method that one is assume to below depth of 1/$\beta$ from assumed submarine surface and other is 1st fixpoint depth by Chang(1937)'s theory. By this paper, FEM dynamic analysis of 3-dimensions was achieved that it has compared pile fixed end modeling with elastic spring modeling base on winkler theory.

  • PDF

Behavior of High-Speed Rail Roadbed Reinforced by Geogrid under Cyclic Loading (지오그리드로 보강한 고속철도 노반의 거동 특성)

  • 신은철;김두환
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.84-91
    • /
    • 2000
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. With the test results, the bearing capacity ratio, elastic rebound ratio, subgrade modulus and the strain of geogrids under loading were investigated. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to estimate the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

Non-classical plate model for single-layered graphene sheet for axial buckling

  • Safaei, Babak;Khoda, Farzad Hamed;Fattahi, A.M.
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.265-275
    • /
    • 2019
  • In this work, the effect of size on the axial buckling behavior of single-layered graphene sheets embedded in elastic media is studied. We incorporate Eringen's nonlocal elasticity equations into three plate theories of first order shear deformation theory, higher order shear deformation theory, and classical plate theory. The surrounding elastic media are simulated using Pasternak and Winkler foundation models and their differences are evaluated. The results obtained from different nonlocal plate theories include the values of Winkler and Pasternak modulus parameters, mode numbers, nonlocal parameter, and side lengths of square SLGSs. We show here that axial buckling behavior strongly depends on modulus and nonlocal parameters, which have different values for different mode numbers and side lengths. In addition, we show that in different nonlocal plate theories, nonlocality is more influential in first order shear deformation theory, especially in certain range of nonlocal parameters.

An Evaluation of Allowable Bearing Capacity of Weathered Rock by Large-Scale Plate-Bearing Test and Numerical Analysis (대형평판재하시험 및 수치해석에 의한 풍화암 허용지지력 평가)

  • Hong, Seung-Hyeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.61-74
    • /
    • 2022
  • Considering that the number of cases in which a structure foundation is located on weathered rock has been increasing recently, for adequate design bearing capacity of a foundation on weathered rock, allowable bearing capacities of such foundations in geotechnical investigation reports were studied. With reference to the study results, the allowable bearing capacity of a foundation on weathered rock was approximately 400-700 kN/m2, with a large variation, and was considered a conservative value. Because the allowable bearing capacity of the foundation ground is an important index in determining the foundation type in the early design stage, it can have a significant influence on the construction cost and period according to the initial decision. Thus, in this study, six large-scale plate-bearing tests were conducted on weathered rock, and the bearing capacity and settlement characteristics were analyzed. According to the test results, the bearing capacities from the six tests exceeded 1,500 kN/m2, and it shows that the results are similar with the one of bearing capacity formula by Pressuremeter tests when compared with the various bearing capacity formula. In addition, the elastic modulus determined by the inverse calculation of the load-settlement behavior from the large-scale plate-bearing tests was appropriate for applying the elastic modulus of the Pressuremeter tests. With consideration of the large-scale plate-bearing tests in this study and other results of plate-bearing tests on weathered rock in Korea, the allowable bearing capacity of weathered rock is evaluated to be over 1,000 kN/m2. However, because the settlement of the foundation increases as the foundation size increases, the allowable bearing capacity should be restrained by the allowable settlement criteria of an upper structure. Therefore, in this study, the anticipated foundation settlements along the foundation size and the thickness of weathered rocks have been evaluated by numerical analysis, and the foundation size and ground conditions, with an allowable bearing capacity of over 1,000 kN/m2, have been proposed as a table. These findings are considered useful in determining the foundation type in the early foundation design.

Evaluation of Size Effects of Shallow Foundation Settlement Using Large Scale Plate Load Test (대형 평판재하시험을 이용한 얕은 기초의 침하에 대한 크기효과 평가)

  • Kim, Kyung-Suk;Lee, Sang-Rae;Park, Young-Ho;Kim, Sung-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.67-75
    • /
    • 2012
  • This paper addresses the size effect of shallow foundation settlement in very dense weathered granite soil commonly encountered in bridge foundation. Load-settlement curves measured from the plate load tests of 5 different plate sizes in 2 sites were analyzed. The test results showed that the ground beneath the plate was considered not to reach the failure state and the settlement continuously increased proportionately as load increased. The result implies that settlement would govern the stability or serviceability of foundation on very dense weathered soil. The size effect is expressed as a relationship of subgrade reaction modulus to the size of plate. Compared with the previous relationships, the size effect in this result was more prominent and indicated that settlement prediction using the previous method could possibly underestimate the settlement of foundation in dense weathered granite soil.

Small scale effect on the vibration of non-uniform nanoplates

  • Chakraverty, S.;Behera, Laxmi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.495-510
    • /
    • 2015
  • Free vibration of non-uniform embedded nanoplates based on classical (Kirchhoff's) plate theory in conjunction with nonlocal elasticity theory has been studied. The nanoplate is assumed to be rested on two-parameter Winkler-Pasternak elastic foundation. Non-uniform material properties of nanoplates have been considered by taking linear as well as quadratic variations of Young's modulus and density along the space coordinates. Detailed analysis has been reported for all possible casesof such variations. Trial functions denoting transverse deflection of the plate are expressed in simple algebraic polynomial forms. Application of the present method converts the problem into generalised eigen value problem. The study aims to investigate the effects of non-uniform parameter, elastic foundation, nonlocal parameter, boundary condition, aspect ratio and length of nanoplates on the frequency parameters. Three-dimensional mode shapes for some of the boundary conditions have also been illustrated. One may note that present method is easier to handle any sets of boundary conditions at the edges.

Analysis of free vibration of beam on elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Differential transform method (DTM) for free vibration analysis of both ends simply supported beam resting on elastic foundation is suggested. The fourth order partial differential equation for free vibration of the beam resting on elastic foundation subjected to bending moment, shear and axial compressive load is obtained by using Winkler hypothesis and small displacement theory. It is assumed that the material is linear-elastic, and that axial load and modulus of subgrade reaction to be constant. In the analysis, shear and axial load effects are considered. The frequency factors of the beam are calculated by using DTM due to the values of relative stiffness; the results are presented in graphs and tables.

Development of a Predictive Model for Cement Stabilised Roadbase

  • Chai Gray W.;Oh Erwin Y.;Smith Warren
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.31-35
    • /
    • 2006
  • Cement stabilisation is a common method for stabilising recycled road base material and provides a longer pavement life. With cement effect, the increment of stiffness in the stabilised layer would provide better load transfer to the pavement foundation. The recycling method provides an environmentally option as the existing road base materials will not be removed. This paper presents a case study of a trial section along the North-South Expressway in West Malaysia, where the Falling Weight Deflectometer (FWD) was implemented to evaluate the compressive strength and in-situ stiffness of the cement stabilised road base material. The improvement in stiffness of the cement stabilised base layer was monitored, and samples were tested during the trial. FWD was found to be useful for the structural assessment of the cement-stabilised base layer prior to placement of asphalt layers. Results from the FWD were applied to verify the assumed design parameters for the pavement. Using the FWD, an empirical correlation between the deflection and the stiffness modulus of the pavement foundation is proposed.

  • PDF

Dynamic response of pile groups in series and parallel configuration

  • Sawant, V.A.;Ladhane, K.B.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.395-406
    • /
    • 2012
  • Basic problem of pile foundation is three dimensional in nature. Three dimensional finite element formulation is employed for the analysis of pile groups. Pile, pile-cap and soil are modeled using 20 node element, whereas interface between pile or pile cap and soil is modeled using 16 node surface element. A parametric study is carried out to consider the effect of pile spacing, number of piles, arrangement of pile and soil modulus on the response of pile group. Results indicate that the response of pile group is dependent on these parameters.