• 제목/요약/키워드: foundation mass

검색결과 374건 처리시간 0.025초

A Multivariate Statistical Approach to Comparison of Essential Oil Composition from Three Mentha Species

  • Park, Kuen-Woo;Kim, Dong-Yi;Lee, Sang-Yong;Kim, Jun-Hong;Yang, Dong-Sik
    • 원예과학기술지
    • /
    • 제29권4호
    • /
    • pp.382-387
    • /
    • 2011
  • The chemical composition of essential oils obtained from aerial parts in spearmint, apple mint and chocolate mint, was investigated by gas chromatography/mass spectrometry analyses. (-)-Carvone (33.0%) was quantitatively major compound in spearmint, followed by R-(+)-limonene (11.7%) and ${\beta}$-phellandrene (9.7%); (-)-carvone (37.4%) and germacrene D (11.9%) in apple mint; and (-)-menthol (34.3%), p-menthone (18.4%) and menthofuran (9.8%) in chocolate mint. Hierarchical cluster analysis and principle components analysis showed the clear difference in chemical composition of the three mint oils.

Theoretical evaluation of collision safety for Submerged Floating Railway Tunnel (SFRT) by using simplified analysis

  • Seo, Sung-il;Moon, Jiho;Mun, Hyung-Suk
    • Structural Engineering and Mechanics
    • /
    • 제64권3호
    • /
    • pp.293-299
    • /
    • 2017
  • Submarine collisions is one of the major hazardous factor for Submerged Floating Railway Tunnel (SFRT) and this study presents the safety evaluation for submarine collision to SFRT by using theoretical approach. Simplified method to evaluate the collision safety of SFRT was proposed based on the beam on elastic foundation theory. Firstly, the time history load function for submarine collision was obtained by using one-degree-of-freedom vibration model. Then, the equivalent mass and stiffness of the structure were calculated, and the collision responses of SFRT were evaluated. Finite element analysis was conducted to verify the proposed equations, and it can be found that the collision responses, such as deflection, and acceleration, agreed well with the proposed equations. Finally, derailment condition for high speed train in SFRT due to submarine collision was proposed.

한국·일본의 패션산업 발전과정 비교를 통한 마케팅 전략 연구 (A Study on Marketing Strategy through Comparison of Fashion Industry Development Process Between Korea and Japan)

  • 이호정
    • 한국의류산업학회지
    • /
    • 제5권4호
    • /
    • pp.351-362
    • /
    • 2003
  • To study marketing strategy changes caused by Korea fashion industry development process, the fashion marketing strategy changes of Japan, considered as the most similar one of Korea, was compared. At each period, p! roper cost efficiency strategies, product differentiation strategies, and market segment strategies has been selected and applied. The fashion industry foundation period namely practical usage clothing period of Korea follows 10 years after one of Japan. 90's highly sensitive fashion period namely fashion industry growth period follows 5 years after one of Japan. As entering to fashion industry maturity period with global competition, the time difference falls to less than 5 years. With hosting of 2002's World-Cup, Korea's global competitiveness has increased, and it appears to be possible of being fashion market leader in East Asia and Japan's rival on an equal footing.

조화운동하는 기반상에서 작동하는 비선형 동흡진기의 동특성에 관한 연구 (A study on the dynamic characteristics of non-linear dynamic vibration absorber excited by harmonic ground motion)

  • 김광식;안찬우
    • 대한기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.131-136
    • /
    • 1988
  • 본 연구에서는 기반의 주기변위를 받는 주진동계에 비선형스프링과 선형 감쇠를 갖는 비선형동흡진기가 부착된 진동계의 운동방정식을 유도하여 조화바란스법 으로 지면에 대한 주진동계의 상대진폭의 진폭비를 산출하고 안정성해석을 하였으며, 비선형성의 영향과 스프링의 경.연성에 따르는 특성을 규명하였다.

크리이프와 건조수축영향을 고려한 매스콘크리트에서 수화열에 대한 온도응력해석 (Thermal Stress Analysis on the Heat of Hydration Considering Creep and Shrinkage Effects of Mass Concrete)

  • 김진근;김국한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.107-113
    • /
    • 1992
  • The heat of hydration of cement the causes the internal temperature rise at early age, particulary in massive concrete structures such as a mat-slab of nuclear reactor building or a dam or a large footing. As the result of the temperature rise and restraint of foundation, the thermal stress enough to induce concrete cracks can occur. Therefore, the prediction of the thermal stress is very important in the design and construction stages in order to control the cracks developed in massive concrete structures. And, more creep and shrinkage take place at elevated temperatures in young concrete, Thus the effect of creep and shrinkage must be considered for checking the safety and servicebility(crack, durability and leakage).

  • PDF

A new way to design and construct a laminar box for studying structure-foundation-soil interaction

  • Qin, X.;Cheung, W.M.;Chouw, N.
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.521-532
    • /
    • 2019
  • This paper describes the construction of a laminar box for simulating the earthquake response of soil and structures. The confinement of soil in the transverse direction does not rely on the laminar frame but is instead achieved by two acrylic glass walls. These walls allow the behaviour of soil during an earthquake to be directly observed in future study. The laminar box was used to study the response of soil with structure-footing-soil interaction (SFSI). A single degree-of-freedom (SDOF) structure and a rigid structure, both free standing on the soil, were utilised. The total mass and footing size of the SDOF and rigid structures were the same. The results show that SFSI considering the SDOF structure can affect the soil surface movements and acceleration of the soil at different depths. The acceleration developed at the footing of the SDOF structure is also different from the surface acceleration of free-field soil.

Fluid-conveying piezoelectric nanosensor: Nonclassical effects on vibration-stability analysis

  • Kachapi, Sayyid H. Hashemi
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.619-629
    • /
    • 2020
  • In current study, surface/interface effects for pull-in voltage and viscous fluid velocity effects on dimensionless natural frequency (DNF) of fluid-conveying piezoelectric nanosensor (FCPENS) subjected to direct electrostatic voltage DC with nonlinear excitation, harmonic force and also viscoelastic foundation (visco-pasternak medium and structural damping) are investigated using Gurtin-Murdoch surface/interface (GMSIT) theory. For this analysis, Hamilton's principles, the assumed mode method combined with Lagrange-Euler's are used for the governing equations and boundary conditions. The effects of surface/interface parameters of FCPENS such as Lame's constants (λI,S, μI,S), residual stress (τ0I,S), piezoelectric constants (e31psk,e32psk) and mass density (ρI,S) are considered for analysis of dimensionless natural frequency respect to viscous fluid velocity u̅f and pull-in voltage V̅DC.

Dynamic impedance of a 3×3 pile-group system: Soil plasticity effects

  • Gheddar, Kamal;Sbartai, Badreddine;Messioud, Salah;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.377-386
    • /
    • 2022
  • This paper considers dynamic impedance functions and presents a detailed analysis of the soil plasticity influence on the pile-group foundation dynamic response. A three-dimensional finite element model is proposed, and a calculation method considering the time domain is detailed for the nonlinear dynamic impedance functions. The soil mass is modeled as continuum elastoplastic solid using the Mohr-Coulomb shear failure criterion. The piles are modeled as continuum solids and the slab as a structural plate-type element. Quiet boundaries are implemented to avoid wave reflection on the boundaries. The model and method of analysis are validated by comparison with those published on literature. Numerical results are presented in terms of horizontal and vertical nonlinear dynamic impedances as a function of the shear soil parameters (cohesion and internal friction angle), pile spacing ratio and frequencies of the dynamic signal.

Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions

  • Lei-Lei Gan;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • 제32권5호
    • /
    • pp.541-551
    • /
    • 2023
  • Snap-buckling is one of the main failure modes of structures, because it will lead to the reduction of structural bearing capacity, durability loss and even structural damage. Boundary condition plays an important role in the research of engineering mechanics. Further discussion on the boundary conditions problems will help to analyze the dynamic and static behavior of structures more accurately. Therefore, in order to understand the dynamic and static behavior of curved beams more comprehensively, this paper mainly studies the nonlinear snap-through buckling and forced vibration characteristics of functionally graded graphene reinforced composites (FG-GPLRCs) curved beams with two different boundary conditions (including clamped-hinged and hinged-hinged) using Euler-Bernoulli beam theory (E-BBT). In addition, the effects of the curved beam radius, the GLPs distributions, number of GLPs layers, the mass fraction of GLPs and elastic foundation parameters on the nonlinear snap-through buckling and forced vibration behavior are discussed respectively.

Clinical features and molecular mechanism of muscle wasting in end stage renal disease

  • Sang Hyeon Ju;Hyon-Seung Yi
    • BMB Reports
    • /
    • 제56권8호
    • /
    • pp.426-438
    • /
    • 2023
  • Muscle wasting in end-stage renal disease (ESRD) is an escalating issue due to the increasing global prevalence of ESRD and its significant clinical impact, including a close association with elevated mortality risk. The phenomenon of muscle wasting in ESRD, which exceeds the rate of muscle loss observed in the normal aging process, arises from multifactorial processes. This review paper aims to provide a comprehensive understanding of muscle wasting in ESRD, covering its epidemiology, underlying molecular mechanisms, and current and emerging therapeutic interventions. It delves into the assessment techniques for muscle mass and function, before exploring the intricate metabolic and molecular pathways that lead to muscle atrophy in ESRD patients. We further discuss various strategies to mitigate muscle wasting, including nutritional, pharmacological, exercise, and physical modalities intervention. This review seeks to provide a solid foundation for future research in this area, fostering a deeper understanding of muscle wasting in ESRD, and paving the way for the development of novel strategies to improve patient outcomes.