• Title/Summary/Keyword: foundation layer

Search Result 429, Processing Time 0.028 seconds

Implementation of FOUNDATION Fieldbus Interface Board (FOUNDATION 필드버스 인터페이스 보드 구현)

  • 최인호;홍승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.93-93
    • /
    • 2000
  • In this study, physical and data link layer protocols of FOUNDATION Fieldbus are implemented. INTEL386EX and 80196KC are used fer the CPU of PC interface board and sensor interface module, respectively The physical layer protocol of FOUNDATION Fieldbus is developed by using FB3050 chip, the fieldbus communication controller ASIC. The data Link layer protocol of FOUNDATION Fieldbus is implemented by software.

  • PDF

Foundation size effect on the efficiency of seismic base isolation using a layer of stone pebbles

  • Banovic, Ivan;Radnic, Jure;Grgic, Nikola
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.103-117
    • /
    • 2020
  • The effect of the foundation size on the efficiency of seismic base isolation using a layer of stone pebbles is experimentally investigated. Four scaled models of buildings with different stiffnesses (from very stiff to soft) were tested, each with the so-called small and large foundation, and exposed to four different accelerograms (different predominant periods and durations). Tests were conducted so that the strains in the model remained elastic and afterwards the models were tested until collapse. Each model was tested for the case of the foundation being supported on a rigid base and on an aseismic layer. Compared to the smaller foundation, the larger foundation results in a reduced rocking effect, higher earthquake forces and lower bearing capacity of the tested models, with respectable efficiency (reduced strain/stress, displacement and increase of the ultimate bearing capacity of the model) for the considered seismic base isolation compared to the foundation on a rigid base.

Model tests on the bearing capacity of pervious concrete piles in silt and sand

  • Han Xia;Guangyin Du;Jun Cai;Changshen Sun
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.79-91
    • /
    • 2024
  • The settlement, bearing capacity, axial force, and skin friction responses of pervious and impervious concrete piles in silty and sandy underlying layer foundations and of pervious concrete piles in model tests were determined. The results showed that pervious concrete piles can exhibit high strengths, provide drainage paths and thus reduce foundation consolidation time. Increasing the soil layer thickness and pile length could eliminate the bearing capacity difference of pervious piles in a foundation with a silty underlying layer. The pervious concrete piles in the sandy underlying layer were more efficacious than those in the silty underlying layer because the sandy underlying layer can provide more bearing capacity than the silty underlying layer. The results indicated that the performances of the pervious concrete piles in the sand and silt foundations differed. The pervious concrete piles functioned as floating piles in the underlying layer with a lower bearing capacity and as end-bearing piles in the underlying layer with a higher bearing capacity.

Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory

  • Taherifar, Reza;Zareei, Seyed Alireza;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.99-115
    • /
    • 2020
  • This article deals with the dynamic analysis in pad concrete foundation containing Silica nanoparticles (SiO2) subject to seismic load. In order to control the foundation smartly, a piezoelectric layer covered the foundation. The weight of the building by a column on the foundation is assumed with an external force in the middle of the structure. The foundation is located in soil medium which is modeled by spring elements. The Mori-Tanaka law is utilized for calculating the equivalent mechanical characteristics of the concrete foundation. The Kevin-Voigt model is adopted to take into account the structural damping. The concrete structure is modeled by a thick plate and the governing equations are deduced using Hamilton's principle under the assumption of higher-order shear deformation theory (HSDT). The differential quadrature method (DQM) and the Newmark method are applied to obtain the seismic response. The effects of the applied voltage to the smart layer, agglomeration and volume percent of SiO2 nanoparticles, damping of the structure, geometrical parameters and soil medium of the structure are assessed on the dynamic response. It has been demonstrated by the numerical results that by applying a negative voltage, the dynamic deflection is reduced significantly. Moreover, silica nanoparticles reduce the dynamic deflection of the concrete foundation.

Seismic Analyses of Soil Pressure against Embedded Mat Foundation and Pile Displacements for a Building in Moderate Seismic Area (중진지역 건축물의 묻힌온통기초에 작용하는 토압과 말 뚝변위에 대한 지진해석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Seismic analyses of a pile under a large rigid basement foundation embedded in the homogeneous soil layer were performed practically by a response displacement method assuming a sinusoidal wave form. However, it is hard to take into account the characteristics of a large mat foundation and a heterogeneous soil layer with the response displacement method. The response displacement method is relevant to the 2D problems for longitudinal structures such as tunnel, underground cave structure, etc., but might not be relevant with isolated foundations for building structures. In this study, seismic pile analysis by a pseudo 3D finite element method was carried out to compare numerical results with results of the response displacement method considering 3D characteristics of a foundation-soil system which is important for the building foundation analyses. Study results show that seismic analyses results of a response displacement method are similar to those of a pseudo 3D numerical method for stiff and dense soil layers, but they are too conservative for a soft soil layer inducing large soil pressures on the foundation wall and large pile displacements due to ignored foundation rigidity and resistance.

Soil and structure uncertainty effects on the Soil Foundation Structure dynamic response

  • Guellil, Mohamed Elhebib;Harichane, Zamila;Berkane, Hakima Djilali;Sadouk, Amina
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.153-163
    • /
    • 2017
  • The underlying goal of the present paper is to investigate soil and structural uncertainties on impedance functions and structural response of soil-shallow foundation-structure (SSFS) system using Monte Carlo simulations. The impedance functions of a rigid massless circular foundation resting on the surface of a random soil layer underlain by a homogeneous half-space are obtained using 1-D wave propagation in cones with reflection and refraction occurring at the layer-basement interface and free surface. Firstly, two distribution functions (lognormal and gamma) were used to generate random numbers of soil parameters (layer's thickness and shear wave velocity) for both horizontal and rocking modes of vibration with coefficients of variation ranging between 5 and 20%, for each distribution and each parameter. Secondly, the influence of uncertainties of soil parameters (layer's thickness, and shear wave velocity), as well as structural parameters (height of the superstructure, and radius of the foundation) on the response of the coupled system using lognormal distribution was investigated. This study illustrated that uncertainties on soil and structure properties, especially shear wave velocity and thickness of the layer, height of the structure and the foundation radius significantly affect the impedance functions, and in same time the response of the coupled system.

Harmonic seismic waves response of 3D rigid surface foundation on layer soil

  • Messioud, Salah;Sbartai, Badredine;Dias, Daniel
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.109-118
    • /
    • 2019
  • This study, analyses the seismic response for a rigid massless square foundation resting on a viscoelastic soil layer limited by rigid bedrock. The foundation is subjected either to externally applied forces or to obliquely incident seismic body or surface harmonic seismic waves P, SV and SH. A 3-D frequency domain BEM formulation in conjunction with the thin layer method (TLM) is adapted here for the solution of elastodynamic problems and used for obtained the seismic response. The mathematical approach is based on the method of integral equations in the frequency domain using the formalism of Green's functions (Kausel and Peck 1982) for layered soil, the impedance functions are calculated by the compatibility condition. In this study, The key step is the characterization of the soil-foundation interaction with the input motion matrix. For each frequency the impedance matrix connects the applied forces to the resulting displacement, and the input motion matrix connects the displacement vector of the foundation to amplitudes of the free field motion. This approach has been applied to analyze the effect of soil-structure interaction on the seismic response of the foundation resting on a viscoelastic soil layer limited by rigid bedrock.

Effects of Nonlinear Soil Characteristics on the Dynamic Stiffnesses of a Foundation-Soil System Excited with the Horizontal Motion (비선형 지반특성이 수평 방향운동을 받는 기초지반체계의 동적강성에 미치는 영향)

  • 김용석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.120-129
    • /
    • 2000
  • As structure-soil interaction analysis for the seismic analysis of structures requires a nonlinear analysis of a structure-soil system considering the inelastic characteristics of soil layers nonlinear analyses of the foundation-soil system with the horizontal excitation were performed considering the nonlinear soil conditions for the nonlinear seismic analysis of structures. Stiff soil profile of SD and soft soil profile of SE specified in UBC were considered for the soil layers of a foundation and Ramberg-Osgood model was assumed for the nonlinear characteristics of soil layers. Studies on the changes of dynamci stiffnesses and damping rations of surface and embedded foundations depending on foundation size soil layer depth and piles were performed to investigate the effects of the nonlinear soil layer on the horizontal and rotational dynamic stiffnesses and damping ratios of the foundation-soil system According to the study results nonlinear prperties of a soil laryer decreeased horizontal and rotational linear stiffnesses and increased damping ratios largely Effects of foundation size soil layer depth and piles were also significant suggesting the necessity of nonlinear seismic analyses of structures.

  • PDF

Implementation of FAS Protocol of FOUNDATION Fieldbus (FOUNDATION Fieldbus 프로토콜의 FAS 구현)

  • 백인찬;홍승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.90-90
    • /
    • 2000
  • The FAS protocol of FOUNDATION Fieldbus playes the roles of interface between Data Link Layer and application layer and establishment of connection between receiver and sender. In this study, the FAS protocol of FOUNDATION Fieldbus was developed. The method of implementation is described in this paper. Software of FAS protocol was implemented by Window-based program and DOS-based program for PC and sensor module, respectively.

  • PDF

Effect of the Soft Soil Layer on the Vertical Response of a Structure Excited with the Vertical Component of Earthquakes (연약지반이 수직방향 지진하중을 받는 구조물의 수직방향 반응에 미치는 영향)

  • 김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.113-122
    • /
    • 1999
  • The importance of the vertical response of a structure was well recognized after the Hyogoken-Nanbu earthquake of Japan. However, most of the seismic design codes does not specified the site sail profiles, and the sail and foundations conditions were mostly neglected in the vertical seismic analyses of a structure. In this paper, the effects of foundation size, sail layer depth under the foundation, foundation embedment and pile foundation on the vertical seismic response spectra for both surface and embedded mat foundation were studied to investigate the effects of the soft soil layer on the vertical response of a structure excited with the vertical components of Taft and El Centro earthquakes, considering the sail profile types of $S_A,S_C,S_E$ in UBC-97, the medium and large size foundations, the soil layer depth under the foundation of 30 and 60m, the foundation embedment of 0 and 15m, and the precast reinforced concrete bearing piles installed in the soft soil deposit. According to the study results, the foundation size has a little effect on the vertical seismic response, However, the soil layer depth under the foundation of 60m has to be considered for the vertical seismic analysis of a structure as for the horizontal one. The embedded pile foundations as well as the surface ones built on the soft soil layer amplified the vertical seismic response of a structure very much.

  • PDF