• Title/Summary/Keyword: fossil power plant

Search Result 216, Processing Time 0.029 seconds

An Experimental Study on Water Absorbtion Characteristics of Generator Stator Bar Insulation by Cooling Water Temperature in 500MW Capacity Power Plant (500MW급 화력 발전기 냉각수 온도에 따른 고정자 권선 절연재의 흡습 특성에 관한 실험적 연구)

  • Bae, Yong-Chae;Kim, Hee-Soo;Lee, Doo-Young;Lee, Wook-Ryun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1392-1397
    • /
    • 2008
  • The mechanical integrity of generator stator windings is one of the critical point because the electric power is generated and conducted to power system through these windings. De-mineralized water is used to cool stator bars during the normal operation of generator in large power plants because the water cooled method has highest cooling efficient. Water absorption of bar insulation is progressed by several causes such as generation of water leak path by corrosion, delamination of insulation by vibration, and inadequate water treatment, etc.. Reliable water absorption diagnostics of generator stator bar is important to ensure the availability of power plant and to reduce maintenance cost by generator accident. It is described that the water absorption characteristics for generator stator bar insulation used in 500MW capacity standard fossil power plant by cooling water temperature. It is verified that the management of stator cooling water temperature is one of the important factors to decrease water absorption rate of generator stator bars.

The development of DCS simulator for the make-up demin-water treatment system of Kori #3&4 (고리 제2발전소 순수생산설비 DCS 시뮬레이터 개발)

  • 김태우;서인용;이용관
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.159-164
    • /
    • 2003
  • DCS (Distributed Control System) is adapted in the most fossil power plant in our country but that is not true in the nuclear power plant (NPP) because of the safety problem. KEPRI has developed many simulators for the training of the operators working in power plants. With this accumulated high technology we are developing a DCS simulator for the performance verification of the developed DCS for the make-up demin-water treatment system of Kori #3&4. In this paper we explain how we develop the system model and show a simulation result.

  • PDF

Functional Test of A Station of Control System for Power Plant (발전소 제어시스템 기본 스테이션 기능 검증)

  • Byun, Seung-Hyun;Park, Doo-Yong;Lim, Ick-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.25-32
    • /
    • 2011
  • A control system has been developed by korean engineers for 500MW korean standard type fossil power plant with the advent of retrofit of old control system. The developed control system is required to verify in terms of function and reliability prior to application to a power plant because a power plant is a very important facility in the industry. It is difficult to secure the enough period for installing the control system and commissioning due to the gradual increase of power demand and competitive power market environment. It is essential to verify the control system in order to reduce trial and error cases during overhaul period for application of control system to the power plant. This paper shows the case study of a functional test of a station of control system for power plant.

Exergetic design and analysis of a nuclear SMR reactor tetrageneration (combined water, heat, power, and chemicals) with designed PCM energy storage and a CO2 gas turbine inner cycle

  • Norouzi, Nima;Fani, Maryam;Talebi, Saeed
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.677-687
    • /
    • 2021
  • The tendency to renewables is one of the consequences of changing attitudes towards energy issues. As a result, solar energy, which is the leader among renewable energies based on availability and potential, plays a crucial role in full filing global needs. Significant problems with the solar thermal power plants (STPP) are the operation time, which is limited by daylight and is approximately half of the power plants with fossil fuels, and the capital cost. Exergy analysis survey of STPP hybrid with PCM storage carried out using Engineering Equation Solver (EES) program with genetic algorithm (GA) for three different scenarios, based on eight decision variables, which led us to decrease final product cost (electricity) in optimized scenario up to 30% compare to base case scenario from 28.99 $/kWh to 20.27 $/kWh for the case study. Also, in the optimal third scenario of this plant, the inner carbon dioxide gas cycle produces 1200 kW power with a thermal efficiency of 59% and also 1000 m3/h water with an exergy efficiency of 23.4% and 79.70 kg/h with an overall exergy efficiency of 34% is produced in the tetrageneration plant.

Development of CO2 Emission Factor by Fuel and CO2 analysis at Sub-bituminous Fired Power Plant (연료와 CO2 농도분석을 이용한 아역청탄 화력발전소의 온실가스 배출계수 개발)

  • Jeon, Eui-Chan;Sa, Jae-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.128-135
    • /
    • 2010
  • The main purpose of this study was to develop the greenhouse gas emission factor for power plant using sub-bituminous coal. In Korea, Fired power plant are a major source of greenhouse gases within the fossil fuel combustion sectors, thus the development of emission factors is necessary to understand the characteristics of the national specific greenhouse gas emission and to develop nation specific emission factors. These emission factors were derived from the $CO_2$ concentrations measurement from stack and fuel analysis of sub-bituminous coal. Caloric value of sub-bituminous coal used in the power plants were 5,264 (as received basis), 5,936 (air-dried basis) and 6,575 kcal/kg (dry basis). The C emission factors by fuel analysis and $CO_2$ concentration measurement was estimated to be 26.7(${\pm}0.9$), 26.3(${\pm}2.8$)tC/MJ, respectively. Our estimates of C emission factors were comparable with IPCC default value.

A Study on Solar Power Generation Efficiency Analysis according to Latitude and Altitude (위도와 해발높이에 따른 태양광발전 효율 분석 연구)

  • Cha, Wang-Cheol;Park, Joung-Ho;Cho, Uk-Rae;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.95-100
    • /
    • 2014
  • To solve the problem of conventional fossil energy, utilization of renewable energy is growing rapidly. Solar energy as an energy source is infinite, and a variety of research is being conducted into its utilization. To change solar energy into electrical energy, we need to build a solar power plant. The efficiency of such a plant is strongly influenced by meteorological factors; that is, its efficiency is determined by solar radiation. However, when analyzing observed generation data, it is clear that the generated amount is changed by various factors such as weather, location and plant efficiency. In this paper, we proposed a solar power generation prediction algorithm using geographical factors such as latitude and elevation. Hence, changes in generated amount caused by the installation environment are calculated by curve fitting. Through applying the method to calculate this generation amount, the difference between real generated amount is analyzed.

Environmental Evaluation for a Photovoltaic-Fuel Cell Hybrid Power System (태양전지-연료전지 복합 전력시스템에 대한 환경평가에 관한 연구)

  • 노경수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.83-88
    • /
    • 1998
  • This paper presents an overview of environmental evaluation for a photovoltaic-fuel cell hybrid power plant through the Ideal Point approach, which is one of multiobjective decision support systems. Its evaluation is carried out in terms of such tow criteria as land requirement for plant construction and lifetime CO2 emissions, and ten compared with conventional fossil fuel power plants. Fuel cell power system has been proven a viable technology to back up severe PV power fluctuations under inclement weather conditions. Fuel cell power generation, containing small land use, is able to alleviate the heavy burden of large surface requirement of PV power plants. In addition, the PV-fuel cell hybrid power system shows a very little potential for lifetime CO2 emissions.

  • PDF

Effects of Pipe Network Composition and Length on Power Plant Waste Heat Utilization System Performance for Large-scale Horticulture Facilities (발전소 온배수를 적용한 대규모 시설원예단지용 난방시스템의 열원이송 배관 재질 및 거리에 따른 성능평가)

  • Lee, Keum ho;Lee, Jae Ho;Lee, Kwang Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.4
    • /
    • pp.14-21
    • /
    • 2015
  • Korean government plans to establish large-scale horticulture facility complexes using reclaimed land in order to improve the national competitiveness of agriculture at the government level. One of the most significant problems arising from the establishment of those large-scale horticulture facilities is that these facilities still largely depend on a fossil fuel and they require 24 h a day heating during the winter season in order to provide the necessary breeding conditions for greenhouse crops. These facilities show large energy consumption due to the use of coverings with large heat transmission coefficients such as vinyl and glass during heating in the winter season. This study investigated the applicability of waste heat from power plant for large-scale horticulture facilities by evaluating the waste heat water temperature, heat loss and energy saving performance as a function of distance between power plant and greenhouse. As a result, utilizing power plant waste heat can reduce the energy consumption by around 85% compared to the conventional gas boiler, regardless of the distance between power plant and greenhouse.

Performance Evaluation of Ocean Small Hydropower Plant by Analyzing Water Level and Flow Rate of Circulating Water (방류수의 수위 및 유량 분석을 통한 해양 소수력 성능평가)

  • Kang, Keum-Seok;Kim, Ji-Young;Ryu, Moo-Sung
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • The Samcheonpo ocean small hydropower plant (SHP) has a special feature of using marginal hydraulic head of circulating water system of fossil fuel power plant as a power source and having the characteristics of general hydropower generation and tidal power generation as well. Also, it contributes to reducing green house gases and developing clean energy source by recycling circulating water energy otherwise dissipated into the ocean. The efficiency of small hydropower plant is directly affected by effective head and flow rate of discharged water. Therefore, the efficiency characteristics of ocean hydropower plant are analyzed with the variation of water level and flow rate of discharged water, which is based on the accumulated operation data of the Samcheonpo hydropower plant. After the start of small hydropower plant operation, definite rise of water level was observed. As a result of flow pattern change from free flow to submerged flow, the instability of water surface in overall open channel is increased but it doesn't reach the extent of overflowing channel or having an effect on circulation system. Performance evaluation result shows that the generating power and efficiency of small hydropower exceeds design requirements in all conditions. Analysis results of CWP's water flow rate verify that the amount of flowing water is measured less and the highest efficiency of small hydropower plant is achieved when the effective head has its maximum value. In conclusion, efficiency curve derived from water flow rate considering tidal level shows the best fitting result with design criteria curve and it is verified that overall efficiency of hydropower system is satisfactory.

  • PDF

Assessment of Residual Life for In-Service Fossil Power Plant Components Using Grain Boundary Etching Method (입계부식법에 의한 사용중인 화력발전소 요소의 잔여수명평가)

  • Han, Sang-In;Yoon, Kee-Bong;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.22-31
    • /
    • 1997
  • The grain boundary etching method as a method for assessing degradation of structural materials has received much attention because it is simple, inexpensive and easy to apply to real components. In this study, the effectiveness of the method is verified by successfully applying the technique to in-service components of aged fossil power plants such as main steam pipes, boiler headers an turbine rotors. A new degradation parameter, intersecting number ratio (N$_{1}$/N$_{0}$), is employed. The intersecting number ratio (N$_{1}$/N$_{0}$) is defined as the ratio of intersection number (N$_{1}$) obtained from 5-minute picric acid etched surface to the number (N$_{0}$) obtained from nital etched surface. Two kinds of test materials, 2.25Cr-1Mo steel and 1Cr-1Mo-0.25V steel, were artificially thermal-aged at 630.deg. C in different levels of degradation., (N$_{1}$/N$_{0}$) were measured. And, correlations between the measured values and LMP values calculated from aging temperature and aging time were sought. To check the validity of the correlations obtained in laboratory, similar data were measured from service components in four old Korean fossil power plants. These on-site measurement data were in good correlation with those obtained in the laboratory.oratory.