• 제목/요약/키워드: fossil form stage

검색결과 5건 처리시간 0.02초

Economic Evaluation of Coupling APR1400 with a Desalination Plant in Saudi Arabia

  • Abdoelatef, M. Gomaa;Field, Robert M.;Lee, YongKwan
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.73-87
    • /
    • 2016
  • Combining power generation and water production by desalination is economically advantageous. Most desalination projects use fossil fuels as an energy source, and thus contribute to increased levels of greenhouse gases. Environmental concerns have spurred researchers to find new sources of energy for desalination plants. The coupling of nuclear power production with desalination is one of the best options to achieve growth with lower environmental impact. In this paper, we will per-form a sensitivity study of coupling nuclear power to various combinations of desalination technology: {1} thermal (MSF [Multi-Stage Flashing], MED [Multi-Effect Distillation], and MED-TVC [Multi-Effect Distillation with Thermal Vapour Compression]); {2} membrane RO [Reverse Osmosis]; and {3} hybrid (MSF-RO [Multi-Stage Flashing & Reverse Osmosis] and MED-RO [Multi-Effect Distillation & Reverse Osmosis]). The Korean designed reactor plant, the APR1400 will be modeled as the energy production facility. The economical evaluation will then be executed using the computer program DEEP (Desalination Economic Evaluation Program) as developed by the IAEA. The program has capabilities to model several types of nuclear and fossil power plants, nuclear and fossil heat sources, and thermal distillation and membrane desalination technologies. The output of DEEP includes levelized water and power costs, breakdowns of cost components, energy consumption, and net saleable power for any selected option. In this study, we will examine the APR1400 coupled with a desalination power plant in the Kingdom of Saudi Arabia (KSA) as a prototypical example. The KSA currently has approximately 20% of the installed worldwide capacity for seawater desalination. Utilities such as power and water are constructed and run by the government. Per state practice, economic evaluation for these utilities do not consider or apply interest or carrying cost. Therefore, in this paper the evaluation results will be based on two scenarios. The first one assumes the water utility is under direct government control and in this case the interest and discount rate will be set to zero. The second scenario will assume that the water utility is controlled by a private enterprise and in this case we will consider different values of interest and discount rates (4%, 8%, & 12%).

폐기물 고형연료(RDF)의 원료 기준 연구 (Study on the Criteria of Raw Materials for RDF)

  • 노남선;신대현;배달희;공승대;조서영;김광호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.187.1-187.1
    • /
    • 2011
  • RDF(Refuse-Derived Fuel) is a fuel of pelletized form made of combustible solid wastes and can not only be used as alternative energy to fossil fuel but also solve troubles in thermal uses of incinerator. As the first stage for obtaining elementary data required to develop criteria of raw materials appropriate to RDF combustion facilities actively spread recently in Korea, preliminary experiments were conducted on CO, SOx, NOx and HCl production and reduction characteristics in combustion of RDF. RDF samples weighing 2~3 g per a sample were manufactured in a lab-scale way and combustion tests of RDF were carried out in electric furnace with quartz tube of 50 mm inside diameter.

  • PDF

천황산 Talus의 형성과 지형발달 (The Formation and Geomorphic Development of Chon-hwang-san(Mt.) Talus)

  • 전영권
    • 한국지역지리학회지
    • /
    • 제2권2호
    • /
    • pp.173-182
    • /
    • 1996
  • 본 연구는 경상남도 밀양군에 위치하는 천황산 talus에 대한 수 차례의 현지조사를 통하여 그것의 지형적 특성과 성인을 분석하여 보았으며 주된 결과는 다음과 같다. 첫째, 연구지역의 talus는 한반도에서 흔히 볼 수 있는 talus와는 상이한 지형적 경관을 보여준다. 둘째, 암설의 입경과 talus의 규모 그리고 사면경사는 비교적 큰 편에 해당된다. 셋째, talus 형성의 전제 조건인 금애면은 완전히 평행후퇴하여 지금은 소멸되었다. 넷째, 연구지역의 talus는 지난 빙기의 주빙하적 기후환경하에서 생성된 각력의 암설들이 rock fall 상태로 금애면 아래에 집적되어 형성되었다. 다섯째, 급애면의 완전소멸로 현재는 더 이상 암설의 추가공급이 이루어지지 않고 있을 뿐만 아니라 구성암설의 이동성도 인정되지 않아 지형발달단계상 화석지형화 단계로 파악된다. 결국 이러한 지형적 경관의 특이성은 본 지형의 형성프로세서와 지형적 발달단계를 설명하는데 중요하며, talus의 유형 분류에 큰 도움을 줄 수 있다.

  • PDF

동적 계획법을 이용한 LNG 현물시장에서의 포트폴리오 구성방법 (Optimal LNG Procurement Policy in a Spot Market Using Dynamic Programming)

  • 류종현
    • 대한산업공학회지
    • /
    • 제41권3호
    • /
    • pp.259-266
    • /
    • 2015
  • Among many energy resources, natural gas has recently received a remarkable amount of attention, particularly from the electrical generation industry. This is in part due to increasing shale gas production, providing an environment-friendly fossil fuel, and high risk of nuclear power. Because South Korea, the world's second largest LNG importing nation after Japan, has no international natural gas pipelines and relies on imports in the form of LNG, the natural gas has been traditionally procured by long term LNG contracts at relatively high price. Thus, there is a need of developing an Asian LNG trading hub, where LNG can be traded at more competitive spot prices. In a natural gas spot market, the amount of natural gas to be bought should be carefully determined considering a limited storage capacity and future pricing dynamics. In this work, the problem to find the optimal amount of natural gas in a spot market is formulated as a Markov decision process (MDP) in risk neutral environment and the optimal base stock policy which depends on a stage and price is established. Taking into account price and demand uncertainties, the basestock target levels are simply approximated from dynamic programming. The simulation results show that the basestock policy can be one of effective ways for procurement of LNG in a spot market.

Primary Energy Conversion in a Direct Drive Turbine for Wave Power Generation

  • Prasad, Deepak Divashkar;Zullah, Mohammed Asid;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.237.1-237.1
    • /
    • 2010
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Ocean contains energy in form of thermal energy and mechanical energy: thermal energy from solar radiation and mechanical energy from the waves and tides. The current paper looks at generating power using waves. The primary objective of the present study is to maximize the primary energy conversion (first stage conversion) of the base model by making some design changes. The model entire consisted of a numerical wave tank and the turbine section. The turbine section had three components; front guide nozzle, augmentation channel and the rear chamber. The augmentation channel further consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. Different front guide nozzle configuration and rear chamber design were studied. As mentioned, a numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall which moved sinusoidally with the general function, $x=asin{\omega}t$. In addition to primary energy conversion, observation of flow characteristics, pressure and the velocity in the augmentation channel, rear chamber as well as the front guide nozzle are presented in the paper. The analysis was performed using the commercial code of the ANSYS-CFX. The base model recorded water power of 29.9 W. After making the changes, the best model obtained water power of 37.1 W which represents an increase of approximately 24% in water power and primary energy conversion.

  • PDF