• Title/Summary/Keyword: fossil form stage

Search Result 5, Processing Time 0.022 seconds

Economic Evaluation of Coupling APR1400 with a Desalination Plant in Saudi Arabia

  • Abdoelatef, M. Gomaa;Field, Robert M.;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-87
    • /
    • 2016
  • Combining power generation and water production by desalination is economically advantageous. Most desalination projects use fossil fuels as an energy source, and thus contribute to increased levels of greenhouse gases. Environmental concerns have spurred researchers to find new sources of energy for desalination plants. The coupling of nuclear power production with desalination is one of the best options to achieve growth with lower environmental impact. In this paper, we will per-form a sensitivity study of coupling nuclear power to various combinations of desalination technology: {1} thermal (MSF [Multi-Stage Flashing], MED [Multi-Effect Distillation], and MED-TVC [Multi-Effect Distillation with Thermal Vapour Compression]); {2} membrane RO [Reverse Osmosis]; and {3} hybrid (MSF-RO [Multi-Stage Flashing & Reverse Osmosis] and MED-RO [Multi-Effect Distillation & Reverse Osmosis]). The Korean designed reactor plant, the APR1400 will be modeled as the energy production facility. The economical evaluation will then be executed using the computer program DEEP (Desalination Economic Evaluation Program) as developed by the IAEA. The program has capabilities to model several types of nuclear and fossil power plants, nuclear and fossil heat sources, and thermal distillation and membrane desalination technologies. The output of DEEP includes levelized water and power costs, breakdowns of cost components, energy consumption, and net saleable power for any selected option. In this study, we will examine the APR1400 coupled with a desalination power plant in the Kingdom of Saudi Arabia (KSA) as a prototypical example. The KSA currently has approximately 20% of the installed worldwide capacity for seawater desalination. Utilities such as power and water are constructed and run by the government. Per state practice, economic evaluation for these utilities do not consider or apply interest or carrying cost. Therefore, in this paper the evaluation results will be based on two scenarios. The first one assumes the water utility is under direct government control and in this case the interest and discount rate will be set to zero. The second scenario will assume that the water utility is controlled by a private enterprise and in this case we will consider different values of interest and discount rates (4%, 8%, & 12%).

Study on the Criteria of Raw Materials for RDF (폐기물 고형연료(RDF)의 원료 기준 연구)

  • Nho, Namsun;Shin, Daehyun;Bae, Dalhee;Kong, Seungdae;Cho, Seoyoung;Kim, Kwangho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.187.1-187.1
    • /
    • 2011
  • RDF(Refuse-Derived Fuel) is a fuel of pelletized form made of combustible solid wastes and can not only be used as alternative energy to fossil fuel but also solve troubles in thermal uses of incinerator. As the first stage for obtaining elementary data required to develop criteria of raw materials appropriate to RDF combustion facilities actively spread recently in Korea, preliminary experiments were conducted on CO, SOx, NOx and HCl production and reduction characteristics in combustion of RDF. RDF samples weighing 2~3 g per a sample were manufactured in a lab-scale way and combustion tests of RDF were carried out in electric furnace with quartz tube of 50 mm inside diameter.

  • PDF

The Formation and Geomorphic Development of Chon-hwang-san(Mt.) Talus (천황산 Talus의 형성과 지형발달)

  • Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.2
    • /
    • pp.173-182
    • /
    • 1996
  • The intent of this paper is to examine the talus in Chon-hwang-san in the southern part of Korean Peninsula, and then analyze its geomorphic feature and origin. The research is summarized as follows; (1) The talus is 220m long and the range of the width from 10 to 75m. The mean gradient is $33^{\circ}$ and the mean block size is $110{\times}59cm$(long axis$\times$short axis). The overall appearance of the talus is tongue-shaped and the geology of the constituent blocks is dacite. (2) This talus has two particular geomorphic landscapes. One is that the talus has not free face as source of blocks back of itself; the free face of the talus has been parallel retreated to disappearance by frost attack. The other is that the upper part of the talus is on the ridge. (3) This talus is classified into rock fall talus type, and the shape of rock fragments is angular. When considered in conjunction with face of being mentioned above, the morphology and lithology of the talus are best explained on the basis of origin under periglacial environment during late pleistocene time. (4) Most constituent rock debris are now lichen-covered, or covered with a mantle of weathering. There is no evidence of appreciable movement and for supplying block. Therefore, the talus appears to be relict or fossil form stage, currently.

  • PDF

Optimal LNG Procurement Policy in a Spot Market Using Dynamic Programming (동적 계획법을 이용한 LNG 현물시장에서의 포트폴리오 구성방법)

  • Ryu, Jong-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • Among many energy resources, natural gas has recently received a remarkable amount of attention, particularly from the electrical generation industry. This is in part due to increasing shale gas production, providing an environment-friendly fossil fuel, and high risk of nuclear power. Because South Korea, the world's second largest LNG importing nation after Japan, has no international natural gas pipelines and relies on imports in the form of LNG, the natural gas has been traditionally procured by long term LNG contracts at relatively high price. Thus, there is a need of developing an Asian LNG trading hub, where LNG can be traded at more competitive spot prices. In a natural gas spot market, the amount of natural gas to be bought should be carefully determined considering a limited storage capacity and future pricing dynamics. In this work, the problem to find the optimal amount of natural gas in a spot market is formulated as a Markov decision process (MDP) in risk neutral environment and the optimal base stock policy which depends on a stage and price is established. Taking into account price and demand uncertainties, the basestock target levels are simply approximated from dynamic programming. The simulation results show that the basestock policy can be one of effective ways for procurement of LNG in a spot market.

Primary Energy Conversion in a Direct Drive Turbine for Wave Power Generation

  • Prasad, Deepak Divashkar;Zullah, Mohammed Asid;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.237.1-237.1
    • /
    • 2010
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Ocean contains energy in form of thermal energy and mechanical energy: thermal energy from solar radiation and mechanical energy from the waves and tides. The current paper looks at generating power using waves. The primary objective of the present study is to maximize the primary energy conversion (first stage conversion) of the base model by making some design changes. The model entire consisted of a numerical wave tank and the turbine section. The turbine section had three components; front guide nozzle, augmentation channel and the rear chamber. The augmentation channel further consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. Different front guide nozzle configuration and rear chamber design were studied. As mentioned, a numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall which moved sinusoidally with the general function, $x=asin{\omega}t$. In addition to primary energy conversion, observation of flow characteristics, pressure and the velocity in the augmentation channel, rear chamber as well as the front guide nozzle are presented in the paper. The analysis was performed using the commercial code of the ANSYS-CFX. The base model recorded water power of 29.9 W. After making the changes, the best model obtained water power of 37.1 W which represents an increase of approximately 24% in water power and primary energy conversion.

  • PDF