• Title/Summary/Keyword: fossil

Search Result 1,761, Processing Time 0.028 seconds

Study of the Spatial Location Analysis for Domestic Offshore Wind Farm (국내 해상풍력 발전단지 입지 분석 연구)

  • Kim, Dong-Hwi;Lee, Yong-Jun;Ryu, In-Ho;Seo, Dae-Rim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.504-511
    • /
    • 2010
  • After facing the fact such as fossil-fuel depletion, global warming, the Kyoto Protocol coming into force of mandatory reductions of carbon dioxide, the world is actively promoting the spread of the solar, wind, tidal, geothermal and other clean renewable energy technology development. Among them, wind power is the only alternative energy to secure a comparable price competition with fossil fuels because cheaper price power generation than other renewable energy when creating large-scale wind farm, thus wind power is the fastest growing industries in the world in the renewable energy field. Especially the offshore wind power is showing rapid growth as most of the wind power sector because of less changes of wind speed, no restrictions of land use, and large-scale development of offshore wind power. In this paper, the field of site selection and spatial location analysis techniques for development of large-scale offshore wind farm are discussed primarily. This paper shows overview of offshore wind power and establishment procedure for development of offshore wind farm.

  • PDF

Global Carbon Cycle and Budget Study (지구규모의 탄소 순환 및 물질수지 연구)

  • 권오열
    • Journal of Environmental Science International
    • /
    • v.5 no.4
    • /
    • pp.429-440
    • /
    • 1996
  • A global carbon cycle model (GCCM), that incorporates interaction among the terrestrial biosphere, ocean, and atmosphere, was developed to study the carbon cycling aid global carbon budget, especially due to anthropogenic $CO_2$ emission. The model that is based on C, 13C and 14C mass balance, was calibrated with the observed $CO_2$ concentration, $\delta$13C and $\Delta$14C in the atmosphere, Δ14C in the soil, and $\Delta$14C in the ocean. Also, GCCM was constrained by the literature values of oceanic carbon uptake and CO, emissions from deforestation. Inputs (forcing functions in the model) were the C, 13C and 14C as $CO_2$ emissions from fossil fuel use, and 14C injection into the stratosphere by bomb-tests. The simulated annual carbon budget of 1980s due to anthropoRenic $CO_2$ shows that the global sources were 5.43 Gt-C/yr from fossil fuel use and 0.91 Gt-C/yr from deforestation, and the sinks were 3.29 Gt-C/yr in the atmosphere, 0.90 Gt-C/yr in the terrestrial biosphere and 2.15 Gt-C/yr in the ocean. The terrestrial biosphere is currently at zero net exchange with the atmosphere, but carbon is lost cia organic carbon runoff to the ocean. The model could be utilized for a variety of studies in $CO_2$ policy and management, climate modeling, $CO_2$ impacts, and crop models.

  • PDF

Internal Flow Analysis of a Tubular-type Small Hydroturbine by Runner Vane Angle

  • Nam, Sang-Hyun;Kim, You-Taek;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1044-1050
    • /
    • 2008
  • Most of developed countries, the consumption of fossil fuels has been serious problems that cause serious environment pollution like acid rain, global warming. Also, we have faced that limitation fossil fuels will be exhausted. Currently, small hydropower attracts attention because of its small, clean, renewable, and abundant energy resources to develop. By using a small hydropower generator of which main concept is based on using the different water pressure levels in pipe lines, energy which was initially wasted by use of a reducing valve at the end of the pipeline, is collected by turbine in the hydropower generator. A propeller shaped hydroturbine has been used in order to use this renewable pressure energy. In this study, in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the flow coefficient are examined in detail. Tubular-turbine among small hydraulic power generation can be used at low-head. The purpose of this study is to research turbine's efficiency due to runner vane angle using CFD analysis.

Performance of Air-Water Direct Contact Heat Exchanger Linked to Heat Pump (히트펌프에 연계된 공기-물 직접접촉식 열교환기의 성능)

  • Kim, Y.H.;Keum, D.H.;Ryou, Y.S.;Kang, Y.K.;Kim, J.G.;Jang, J.K.;Lee, H.M.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.80.2-80.2
    • /
    • 2011
  • Fossil fuel was a major energy resource but the consumption of fossil fuel will decrease gradually because of limited deposits and non-environmental features. In contrast, because the renewable energy resources are infinite and sustainable, their consumption has increased annually. To promote the supply of these infinite natural energy we have to develop more efficient and inexpensive heat recovery system. In this study a simple device was designed as a heat exchanger, that is a direct contact heat exchanger. This heat exchanger was manufactured in cylindrical shape with height of 1,500 mm and diameter of 1,000 mm. To test the efficiency of this heat exchanger, it was connected to the evaporator of heat pump system. During the experimental tests, the humid air of $10{\sim}30^{\circ}C$ was supplied to this air-to-water heat exchanger and then the water flow rate was set to 2500~3500 L/h. Heat recovery rate of this heat exchanger increased in proportion to entering air temperature and water flow rate.

  • PDF

Study on Feasibility Biomethane as a Transport Fuel in Korea (국내 바이오메탄의 차량 연료화 타당성 연구)

  • Kim, Jae-Kon;Lee, Donmin;Park, Chunkyu;Lim, Eui Soon;Jung, Choong-Sub;Kim, Ki-Dong;Oh, Youngsam
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.174.1-174.1
    • /
    • 2011
  • Biogas production and utilisation is an emerging alternative energy technology. Biogas is produced from the biological breakdown of organic matter through anaerobic digestion. Biogas can be utilized for various energy services such as heating, electricity generation and vehicle fuel. Especially, to be utilized as vehicle fuel, raw biogas needs to be upgraded, that is, mainly the removal of carbon dioxide to increase the methane content, up to more than 95% in some cases, similar to the composition of fossil-based natural gas. Biogas fuelled vehicles can reduce $CO_2$ emission by between 75% and 200% compared with fossil fuels. Biomethane development is largely driven by national initiative and predominately by concerns for national air pollution and waste management. Recently, biogas projects for vehicle fuels by some companies are ongoing and Korea government also announced investment to develop biogas as a transport fuel. Therefore, the aim of this study is to examine the feasibility of biomethane as a transport fuel in Korea. In this study, we investigated quality characteristics, quality standard and upgrading technology to use vehicle fuel of transport sector in Korea.

  • PDF

A Study on the GENCO Adaptive Strategy for the Greenhouse Gas Mitigation Policy (온실가스 감축정책에 따른 발전사업자의 대응 방안에 관한 연구)

  • Choi, Dong-Chan;Han, Seok-Man;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.522-533
    • /
    • 2012
  • This paper presents an adaptive strategy of GENCOs for reducing the greenhouse gas by fuel mix change. Fuel mix stands for generation capacity portfolio composed of different fuel resources. Currently, the generation sector of power industry in Korea is heavily dependent on fossil fuels, therefore it is required to change the fuel mix gradually into more eco-friendly way based on renewable energies. The generation costs of renewable energies are still expensive compared to fossil fueled resources. This is why the adaptive change is more preferred at current stage and this paper proposes an optimal strategy for capacity planning based on multiple environmental scenarios on the time horizon. This study used the computer program tool named GATE-PRO (Generation And Transmission Expansion PROgram), which is a mixed-integer non-linear program developed by Hongik university and Korea Energy Economics Institute. The simulations have been carried out with the priority allocation method in the program to determine the optimal mix of NRE(New Renewable Energy). Through this process, the result proposes an economic fuel mix under emission constraints compatible with the greenhouse gas mitigation policy of the United Nations.

The Preparation of Mockeoseuk(China Fossil) Composite by Hybridization Technique and Evaluation of Its Efficacy (복합화기술을 응용한 목어석 복합체의 제조 및 이의 효능에 관한 연구)

  • Kwon, Sun-Sang;Yi, Seung-Hwan;Kim, Duck-Hee;Kim, Jun-Oh;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.3
    • /
    • pp.153-157
    • /
    • 2007
  • Mockeoseuk(China fossil) contains the various kinds of minerals and radiates far infrared light. In order to apply mockeoseuk to the cosmetic formulation, hybridization technique was adapted and modified by selecting a spherical silicone powder as substrate. The resultant composite improved the physical properties such as skin feeling and apparent color and still sustained the efficacy of mockeoseuk. In a clinical test, the cosmetic formulation with 10 wt% mockeoseuk composite raised the temperature of facial skin through enhancement of skin blood flow.

Environmental analysis of present and future fuels in 2D simple model marine gas tubines

  • El Gohary, M. Morsy
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.559-568
    • /
    • 2013
  • Increased worldwide concerns about fossil fuel costs and effects on the environment lead many governments and scientific societies to consider the hydrogen as the fuel of the future. Many researches have been made to assess the suitability of using the hydrogen gas as fuel for internal combustion engines and gas turbines; this suitability was assessed from several viewpoints including the combustion characteristics, the fuel production and storage and also the thermodynamic cycle changes with the application of hydrogen instead of ordinary fossil fuels. This paper introduces the basic environmental differences happening when changing the fuel of a marine gas turbine from marine diesel fuel to gaseous hydrogen for the same power output. Environmentally, the hydrogen is the best when the $CO_2$ emissions are considered, zero carbon dioxide emissions can be theoretically attained. But when the $NO_x$ emissions are considered, the hydrogen is not the best based on the unit heat input. The hydrogen produces 270% more $NO_x$ than the diesel case without any control measures. This is primarily due to the increased air flow rate bringing more nitrogen into the combustion chamber and the increased combustion temperature (10% more than the diesel case). Efficient and of course expensive $NO_x$ control measures are a must to control these emissions levels.

Exploration of Alternative Raw materials to Forest Biomass for Pellets (숲가꾸기 산물을 이용한 펠릿의 원료 적성 연구)

  • Kim, Seong-Ho;Kim, Cheol-Hwan;An, Byeong-Il;Lee, Ji-Yeong;Momin, Md.;Yeasmin, Shabina;Park, Hyeon-Jin;Gwak, Hye-Jeong;Kim, Gyeong-Cheol
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.171-178
    • /
    • 2011
  • During the last decades, global warming from the increased amount of greenhouse gases, mainly carbon dioxide has become a major political and scientific issue. Burning fossil fuels (natural gas, coal and oil) releases $CO_2$, which is also a major cause of global warming. Among the clean environment, wood pellets are considered as promising renewable fossil fuels because of clean burning characteristics, reduction of particulate and NOx emission from combustion. In Korea, more than 50% pellets have to be imported every year because of shortage of feedstocks. On the other hand, about 80% of wood pulps are greatly dependent upon overseas products due to limited forest resources. Under this situation, this study explored how efficiently we have to use forest biomass instead of total dependence on wood as raw materials for pellets.

  • PDF

A Study about an Operating Characteristic of Hydrogen Burner by Using Catalytic Combustion (촉매연소를 이용한 수소버너의 작동 특성에 관한 연구)

  • Kim, Tae-Young;Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Human has faced in lack of fossil fuel and environmental crisis because of high population growth and development of industry. Hydrogen, unlimited amount and clean resource from water electrolysis, is remarkably known as the solution of recent energy crisis. One of the special characteristics of hydrogen is that a little amount of catalytic such as platinum and palladium makes nonflammable combustion, in other words catalyst combustion. Catalytic combustion fueled by hydrogen is environmentally friendly. This paper considers some comparisons of characteristic of catalytic combustion between a single layer of platinum catalyst, double layer of platinum and nickel catalysts and mixture of platinum and nickel catalysts. Some experiments of temperature distribution at different positions and characteristic of combustion in low temperature region were done in order to find an applicable possibility as a house-cooking burner.