• Title/Summary/Keyword: fossil

Search Result 1,777, Processing Time 0.028 seconds

Study of CO2 Absorption Characteristic and Synthesis of 1-(2-methoxyethyl)-3-methylimidazoLium Methanesulfonate Ionic Liquid (1-(2-methoxyethyl)-3-methylimidazolium Methanesulfonate 이온성 액체 합성 및 CO2 흡수 특성 연구)

  • Jin, Yu Ran;Jung, Yoon Ho;Park, So Jin;Baek, Il Hyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • In this study, 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate ionic liquid has been synthesized, characterized and tested with respect to carbon dioxide absorption with the aim to use it as advanced absorbent materials in fossil fuel processing. The ionic liquid was synthesized by a one step method, low cost. The thermal and chemical stability of selected ionic liquid has been investigated by DSC, TGA and the structure was verified by $^1H$-NMR spectroscopy. The solubility of carbon dioxide in the methanesulfonate-based ionic liquids were measured using a high-pressure equilibrium apparatus equipped with a variable-volume view cell at 30, 50 and $70^{\circ}C$ and pressure up to 195 bar. The results show that carbon dioxide solubilities of 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate increased with pressure increasing and temperature decreasing, and the carbon dioxide absorption capacity showed 27.6 $CO_2/IL$(g/kg) at $30^{\circ}C$, 13 bar.

Recent Development of Carbon Dioxide Conversion Technology (이산화탄소 전환 기술의 현황)

  • Choi, Ji-Na;Chang, Tae-Sun;Kim, Beom-Sik
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.229-249
    • /
    • 2012
  • At present, global warming and depletion of fossil fuels have been one of the big issues which should be solved for sustainable development in the future. CCS (carbon capture and sequestration) technology as the post $CO_2$ reduction technology has been considered as a promising solution for global warming due to increased carbon emission. However, the environmental and ecological effects of CCS have drawn concerns. There are needs for noble post reduction technology. More recently, CCU (carbon capture and utilization) Technology, which emphasizes transforming carbon dioxide into value-added chemicals rather than storing it, has been attracted attentions in terms of preventing global warming and recycling the renewable carbon source. In this paper, various technologies developed for carbon dioxide conversion both in gas and liquid phase have been reviewed. For the thermochemical catalysis in gas phase, the development of the catalytic system which can be performed at mild condition and the separation and purification technology with low energy supply is required. For the photochemical conversion in liquid phase, efficient photosensitizers and photocatalysts should be developed, and the photoelectrochemical systems which can utilize solar and electric energy simultaneously are also in development for more efficient carbon dioxide conversion. The energy needed in CCU must be renewable or unutilized one. CCU will be a key connection technology between renewable energy and bio industry development.

Performance Characteristics of Organic Rankine Cycles Using Medium Temperature District Heating Water as Heat Source (지역난방용 중온수 열원 유기랭킨사이클 성능 특성)

  • Park, Woo-Jin;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • It is becoming increasingly important to make use of alternative energy source. because It is not able to rely on only fossil fuel for the recent increasing demand of energy consumption. With this situation, lots of studies for utilizing low grade energy such as industrial waste heat, solar energy, and geothermal energy have been conducted. The aim of this study is to predict the operation characteristics of working fluid by using performance analysis program (ThermoFlex) through the system analysis which is not mixing district return water but using ORC(Organic Rankine Cycle, hereinafter ORC) as a downstream cycle when accumulating district heating (hereinafter DH). In this study, We conducted the performance analysis for the case which has the district heating water temperature($120^{\circ}C$) and Flow rate of $163m^3/h$ (including District Heating return water flow), and examined several working fluid which is proper to this temperature. The case using R245fa (which is the best-case) showed 269.2kW power output, 6.37% efficiency. Additionally, Cut down on fuel was expected because of the boiler inlet temperature increase by being Formed $57.3{\sim}85^{\circ}C$ in a temperature of district heating return water, depending on a pressure change of a condenser in ORC system.

  • PDF

Global Trend of CO2 Capture Technology Development (이산화탄소 포집기술 국외 기술개발 동향)

  • Baek, Jeom-In
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.143-165
    • /
    • 2016
  • The amount of greenhouse gas emission reduction based on INDCs (Intended Nationally Determined Contributions) submitted to UN by each party is not sufficient to achieve the Paris Agreement's aim to "hold the increase in the global average temperature to well below $2^{\circ}C$ above pre-industrial levels and to pursue efforts to limit the temperature increase to $1.5^{\circ}C$" which was determined in the $21^{st}$ Conference of the Parties to the UNFCCC (COP 21). Accordingly, the emission reduction target of each party will be revised for the $2^{\circ}C$ goal. Among the several options to reduce the carbon emission, CCS (Carbon Capture and Storage) is a key option to curb $CO_2$ emissions from large emission sources such as fossil-based power plants, cement plants, and steel production plants. A large scale CCS demonstration projects utilizing $1^{st}$ generation $CO_2$ capture technologies are under way around the world. It is anticipated, however, that the deployment of those $1^{st}$ generation $CO_2$ capture technologies in great numbers without government support will be difficult due to the high capture cost and considerable increase of cost of electricity. To reduce the carbon capture cost, $2^{nd}$ and $3^{rd}$ generation technologies are under development in a pilot or a bench scale. In this paper, current status of large scale CCS demonstration projects and the $2^{nd}$ and $3^{rd}$ generation capture technologies are summarized. Novel capture technologies on wet scrubbing, dry sorbent, and oxygen combustion are explained in detail for all capture areas: post-combustion capture, pre-combustion capture, and new combustion technologies.

A Study on Renewable Energy Policy and Sustainable Development Strategy: German Model and Implication (재생에너지정책과 지속가능발전전략에 관한 연구: 독일모델과 시사점)

  • Park, Sang-Chul
    • Environmental and Resource Economics Review
    • /
    • v.25 no.1
    • /
    • pp.61-87
    • /
    • 2016
  • Germany has carried out its environment friendly energy policy to prevent $CO_2$ emission that affects directly to the global warming phenomenon. Based on this direction, it has performed a sustainable development strategy through the R & D activities in environment and energy technologies. Accordingly, the core elements of German energy and sustainable development policies are renewable energy, ecological energy tax, and emission trading system. In particular, Germany has supported to develop renewable energy resources that prevents from consuming fossil energy resources. At the same time, it has set the ecological energy tax and initiated the emission trading system in order to support the renewable energy policy continuously. This paper analyze whether or not it is possible to generate an economic growth and a sustainable development while using renewable energy resources based on the renewable energy policy that minimize the negative effects on the environment. For that, the paper adopts Germany as a model country. In fact, it is possible to achieve the economic growth and the sustainable development if a nation can substitute increasing energy consumption for the economic growth to renewable energy resources that does not affect to the environment negatively. This model is the German energy policy and sustainable development strategy, and it is the purpose of the paper to prove it logically.

Characteristics of Seasonal Distributions of Fine Particles ($PM_{2.5}$) and Particle-Associated Polycyclic Aromatic Hydrocarbons in Urban, Metropolitan and Industrial Complex Sites (중소도시, 대도시 및 산업지역에서 채취한 미세분진 ($PM_{2.5}$)과 입자상 다환방향족탄화수소의 계절적인 분포 특성)

  • Kim He-Kap;Jung Kyung-Mi;Kim Tae-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.1 s.52
    • /
    • pp.45-56
    • /
    • 2006
  • This study was conducted to investigate seasonal distributions of fine particles ($PM_{2.5}$) and associated polycyclic aromatic hydrocarbons (PAHs) at three cities. $PM_{2.5}$ samples were collected on glass fiber filters at urban (Chuncheon), metropolitan (Seoul), and industrial complex sites (Ulsan) from September, 2002 to February, 2004 using the Andersen FH 95 Particulate Sampler. About five 24-hour samples were collected from each site per season. The filters were analyzed for mass and six selected PAHs concentrations. $PM_{2.5}$ concentrations were the highest either in winter or spring, which could be attributed to the increase of fossil fuel combustion in winter or the transport of yellow sand to the Korean peninsula from China in spring, respectively. Regional $PM_{2.5}$ concentrations were higher in the order of Seoul>Chuncheon>Ulsan without statistical difference among cities. The filters were extracted using dichloromethane in an ultrasonicator and analyzed for six PAHs (anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, and benzo[a]pyrene) with HPLC. Total PAHs concentrations were statistically different among seasons in each site, and the highest concentrations were observed in winter at each sampling site. For total samples collected, the median total PAHs concentrations in Chuncheon ($4.6ng/m^3$) and Seoul ($4.4ng/m^3$) were approximately two times higher than that in Ulsan ($2.1ng/m^3$). Chrysene was a component found in the highest proportion among total PAHs at each site. Carcinogenic risks calculated based on the BaP toxic equivalency factors (TEFs) over the whole sampling period were higher in the order of Chuncheon>Seoul>Ulsan. This study suggests that the atmosphere of Chuncheon is contaminated with particulate matter and PAHs at the levels equivalent to those of Seoul and that an appropriate measure needs to be taken to mitigate human health risks from inhalation exposure to airborne fine particles.

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.

People within the Forest, People outside the Forest : A View from Ecological Anthropology (숲속에 사는 사람, 숲밖에 사는 사람 : 생태인류학적(生態人類學的) 관점(觀點))

  • Chun, Kyung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.330-342
    • /
    • 1990
  • One might have a retrospect on the relationship between the forest and human being from the viewpoint of ecological perspective. It is no doubt that most of the fossil humans should have lived on the forest and the latter provided foods and shelters for humans from their beginning stages, Since the so-called agricultural revolution, humans have extensively started to exploit the forest which had beer, their cradle. The industrial revolution has created another situation against the forest in terms of the quality of ecosystem. These two revolutions have set up the so-called civilization which seems to have been based on the sacrificial oblation of the forest. The cradle for human being has been kept exterminating for the shake of "economic development and miracle." This might be a synoptic history of relationships between the forest and human beings in a sense. designates the behavioral aspects of human being against the forest and people consider the forest only as exploitable resource in this context, and the latter means that people live on the forest and strive to adapt the order of forest ecosystem. The resourcism has developed a strategy of colonialism to exploit the forest and provided a winner's position for the human beings against the forest, This idea and behavioral perspective seems to have started the backfire against the exploiter who is the owner of the civilization. However, there are different philosophies and ideas to view the relationship between the forest and human beings. People within the forest who are mostly considered as "primitives" still keep their idea of the ontology of the forest. There is a theoretical assumption of the "socionatural system" to look into the ecosystem. The forest could be viewed in the above frame of analysis. There are five variables : environment, resource, technology, organization, and ideology. Ideological aspect of the forest can be explained in the context of belief systems. Forest has a meaning of religion and rituals and people within the forest should admire it in anyway of religious reasons. This aspect of the forest cannot be separated from the environmental aspect of the forest. People within the forest acknowledge and practice the above idea. People outside the forest have lost the idea, however, at the cost of acquiring the civilization. They have expelled themselves from the forest and divided the socionatural system of the forest by way of colonialism. The efforts like agroforestry and social forestry would be strategies for recovering the idea of ontology of the forest as well as the sense of community including the forest and human being. People within the forest will be a prospective model for the future socionatural system of the forest for the people outside the forest. At this point, an ecological anthropologist can work with the forest specialists.

  • PDF

Feed System Modeling of Railroad using Fuel Cell Power Generation System (연료전지 발전시스템을 이용한 철도급전계통 모델링)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.195-200
    • /
    • 2020
  • With the growing interest in fossil fuel depletion and environmental pollution, railroad cars operating in Korea are in progress as the conversion from diesel to electric vehicles expands. The photovoltaic system, which is applied as an example of the conversion of electric vehicles, is infinite and pollution-free, and can produce energy without generating hazards such as air pollution, noise, heat, and vibration, and maintain fuel transportation and power generation facilities. There is an advantage that is rarely needed. However, the amount of electricity produced depends on the amount of solar radiation by region, and the energy density is low due to the power generation of about 25㎡/ kWp, so a large installation area is required and the installation place has limited problems. In view of these problems, many studies have been applied to fuel cells in the railway field. In particular, the plan to link the fuel cell power generation system railroad power supply system must be linked to the power supply system that supplies power to the railroad, unlike solar and wind power. Therefore, it has a close relationship with railroad cars and the linkage method can vary greatly depending on the system topology. Therefore, in this paper, we study the validity through simulation modeling related to linkage analysis according to system topology.

Photovoltaic performance evaluation of the bonded single crystalline silicon solar cell on composite specimens under mechanical loading (기계적 하중 하에서 복합재료 시험편에 접착된 단결정 실리콘태양전지의 성능평가)

  • Kim, Jong-Cheon;Choi, Ik-Hyeon;Kim, Dae-Hyun;Jeong, Seong-Kyun
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.56-63
    • /
    • 2011
  • The objective of this study is to investigate appropriate bonding methods of solar cells in order to apply solar cells, which have been receiving particular attention as a renewable energy due to fossil energy depletion and environment issues, to composite structures. Back-contact solar cells with approximately 24.2% energy conversion efficiency were used in this study. Since silicon-based solar cells are mechanically fragile, the secondary-bonding methods using adhesive were examined in this study. The experiment was conducted with three kinds of bonding materials such as EVA film, Resin film and elastic adhesive. The performance of solar cells for three types of adhesives under mechanical loading on test specimens is conducted. In addition, the measuring equipment was designed to evaluate the performance of the solar cells under mechanical loading in real time and the fracture characteristics depending on bonding materials were evaluated. The reason decreasing solar cells efficiency were analyzed and considered by Fractography. The results show that the solar cell performance is largely affected by bonding techniques. Moreover, the bonding method using elastic adhesive shows best solar cell efficiency.