• 제목/요약/키워드: forward extrusion die

검색결과 50건 처리시간 0.024초

열간 압출 공정에 의한 직경 $500{\mu}m$ 마이크로 부품 성형 (Micro forming technology for micro parts below $500{\mu}m$ in diameter by n hot extrusion process)

  • 이경훈;이상진;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.417-420
    • /
    • 2007
  • Micro parts are usually used of producing by micro-electro-mechanical systems(MEMS). In this paper, we present some fundamental results concerning on the MEMS, extrusion condition on the micro forming characteristics and new micro forward extrusion machine has been developed. In the first step, we manufactured micro dies in two kinds of sections. One is a circle section, another is a cross section. The process for fabricating micro dies combines a deep UV-lithography, anisotropic etching techniques and metal electroplating with bulk silicon based on Ni with a thickness of $50{\mu}m$. The outer diameter of Ni-micro dies is 3mm and the diameter of extrusion section is $270{\mu}m$ for a cross section, $500{\mu}m$ for a circle section. The low linear density polyethylene(LLEPD) in the shape of a pellet has been used of micro extrusion. The billet was placed in a container manufactured by electric discharge machining and extruded through the micro die by a piezoelectric actuator. The micro extrusion has succeeded in a forming such micro parts as micro bars, micro cross shafts.

  • PDF

전.후방 캔 압출공정의 성형특성 연구 (A Study on the Forming Characteristics of Forward and Backward Extrusions)

  • 심지훈;최호준;옥정한;함병수;황병복
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.86-92
    • /
    • 2005
  • In this paper a forward-backward can extrusion process are analyzed by using rigid-plastic FEM simulation. FEM simulation is conducted to investigate forming characteristics such as deformation modes fur different process parameters. Design parameters such as thickness ratio, punch angle, friction factor and diameter ratio are selected to study the effect of them on the pattern of material flow. The analysis is focused mainly on the influences of the design factors on deformation pattern in terms of forming load, extruded length ratio and volume ratio. It is known for the simulation that the forming load, the length ratio and the volume ratio increase as the thickness ratio (TR), the wall thickness in forward direction to that in backward direction, decreases. The various punch angles have slight influence on the forming load. length ratio and volume ratio. However friction factor have little effect on the forming characteristics such as the forming load, volume ratio and so on. In addition the forming load increases as diameter ratio (DR), the outer diameter of a can in forward direction to that in backward direction, increases. Furthermore the extruded length ratio is lowest with a certain value of DR=0.85 among diameter ratios. Pressure distribution exerted on the die-material interface is illustrated schematically.

FEM을 이용한 RECTANGULAR CAN 후방압출 해석 (Rectangular can backward extrusion analysis using FEM)

  • 이상승;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.699-702
    • /
    • 2001
  • The increasing demand in industry to produce rectangular cans at the reduction by the rectangular backward extrusion process involves better understanding of this process. In 2-D die deflection and dimensional variation of the component during extrusion, punch retraction, component injection and cooling was conducted using a coupled thermal-mechanical approach for the forward extrusion of aluminum alloy and low-carbon steel in tools of steel. Backward extrusion FE simulation and experimental simulation by physical modeling using wax as a model material have been performed. These simulations gave good results concerning the prediction of th flow modes and the corresponding surface expansions of the material occuring at the contact surface between the can and the punch. There prediction are the limits of the can height, depending on the reduction, the punch geometry, the workpiece material and the friction factor, in order to avoid the risk of damage caused by sticking of the workpiece material to the punch face. The influence of these different parameter on the distribution of the surface expansion along the inner can wall and bottom is already determined. This paper deals with the influence of the geometry changes of the forming tool and the work material in the rectangular backward using the 3-D finite element method.

  • PDF

냉간 압출된 유성기어의 내부결함 방지 (Prevention of Internal Defects of Cold Extruded Planetary Gears)

  • 이정환;최종웅;이영선;최상호
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.168-173
    • /
    • 1999
  • It is investigated that internal defect of planetary gear which consists of two gears with different number of teeth on both side. The internal defect, central burst, begin to form at the place of adiabatic shear band which usually has maximum ductile fracture value during the forming operation, forward and backward extrusion. It makes the plastic forming of planetary gear difficult. The prediction of defect to minimize the cost to produce the planetary gear. The finite element simulation code DEFORM is applied to analyze the defects. In the analysis, the toothed gears are assumed as axisymmetric cylinders whose diameters are equal to those of pitch circles of the each gears. Experiments were carried out with the SCM415 alloy steel as billet material and AIDA 630-ton knuckle-joint press. The calculated results and experimental inspections are compared to design a die and blank without defects and the results are useful to predict the internal defect.

  • PDF

축대칭 단조공정에서 최종제품의 탄성회복에 관한 해석 (Determination of Elastic Recovery for Axi-Symmetric Forged Products)

  • Kim, T.H.;Kim, D.J.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.165-173
    • /
    • 1996
  • The dimensional accuracy of a final product is mainly affected by elastic die deformation during the forging and elastic recovery after the ejection in cold forging process. The investigations on elastic recovery are not so much as those of elastic die deformation. The elastic recovery can be determined by using the elastic-plalstic finite element analysis, but, this method has some limits such as poor conver- gence and long computational time, etc. In this paper, a theoretical analysis for predicting the elastic recovery of a final product in axi-symmetric forging process by using the rigid-plastic finite element method is presented. The rigid-plastic finite element analysis of a cold forward extrusion process involving loading, ejecting process is accomplished by rigid-plastic FE code, DEFORM. The effect of elastic die deformation on the final product dimenmsion is also considered. The calculated elastic recovery is compared is compared with the analysis result of elastic-plastic FE code. ABAQUS.

  • PDF

스프링 힘에 의한 배합부가 단조 공정의 3차원 유한요소해석 (Three-dimensional finite element analysis of forging processes with back pressure exerted by spring force)

  • 장성민;김민철;이민철;전병윤;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.470-473
    • /
    • 2009
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.

  • PDF

스프링 힘에 의한 배압부가 단조 공정의 3차원 유한요소해석 (Three-Dimensional Finite Element Analysis of Forging Processes with Back Pressure Exerted by Spring Force)

  • 장성민;김민철;이민철;전병윤;전만수
    • 소성∙가공
    • /
    • 제19권5호
    • /
    • pp.273-276
    • /
    • 2010
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.

비축대칭 제품의 냉간단조 공정설계시스템의 개발 (Development of Process Planning System for Cold Forging of Non-axisymmetric Parts)

  • 이봉규;권혁홍;조해용
    • 소성∙가공
    • /
    • 제11권5호
    • /
    • pp.405-413
    • /
    • 2002
  • A process planning system for cold forging of non-axisymmetric parts of comparatively simple shape was developed in this study. Programs for the system have been written with Visual LISP in AutoCAD. Shape of the product must be drawn with the solid line and the hidden line, and with the plane and front view, as well. At the plane, the system recognizes the external shape of non-axisymmetric portions - the number of the sides of the regular polygons and the radii of circles inscribing and circumscribing the polygon. At the front view, the system cognizes the diameter of axisymmetric portions and the height of the primitive geometries such as polygon, cylinder, cone, concave, convex, etc. The system perceives that the list developed from the solid line must be formed by the operation of forward extrusion or upsetting, and that the list developed from the hidden line must be formed by the operation of backward extrusion. The system designs the intermediate geometries again by considering clearance between workpiece and die, and then finally the billet diameter, in reverse order from the finished product, on the basis of volume constancy and using the operations, the forming sequence, the number of operations and the intermediate geometries which were already designed. The design rules and knowledges for the system were extracted from the plasticity theories, handbook, relevant reference and empirical knowledge of field experts. Suitability of the process planning was analyzed using SuperForge of FVM simulation package. The results of analysis showed good formability.

체적성형공정에서의 새로운 마찰시험법 제안 (Proposal of Novel Friction Testing Method in Bulk Metal Forming)

  • 강성훈;윤여웅;이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.445-449
    • /
    • 2009
  • With the recent increase in the demand for the net-shape forming, numerical simulations are being commonly adopted to increase the efficiency and effectiveness of design of bulk metal forming processes. Proper consideration of tribological problems at the contact interface between the tool and workpiece is crucial in such simulations. In other words, lubrication and friction play important roles in metal forming by influencing the metal flow, forming load and die wear. In order to quantitatively estimate such friction condition or lubricant characteristic, the constant shear friction model is widely used for bulk deformation analyses. For this, new friction testing method based on the forward or backward extrusion process is proposed to predict the shear friction factor in this work. In this method, the tube-shaped punch pressurizes the workpiece so that the heights at the center and outer of punch (or mandrel) become different according to the friction condition. That is, the height at the center of punch is higher than that at the outer of the punch when the friction condition at the contact interface is severe. From this founding, the proposed friction testing method can be applied to effectively evaluate the friction condition in bulk metal forming processes.

  • PDF

가중잔류항법을 이용한 곡면금형의 축대칭 전방압출해석 (Analysis of axisymmetric extrusion through curved dies by using the method of weighted residuals)

  • 조종래;양동열
    • 대한기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.509-518
    • /
    • 1987
  • 본 연구에서는 냉간 축대칭 전방 압출에 가중잔류항법을 적용하여 재료의 가 공 경화 및 강소성 경계를 고려하는 프로그램을 개발하여 변형도, 응력, 변형력, 강소 성 경계등을 FEM과 동일한 조건에서 비교 해석하고 다른 공정에 적용할 수 있게 하고 또한 곡면다이와 원추형다이를 설계 제작하여 다이의 형상과 단면 감소율이 변형도와 응력 분포에 미치는 영향을 검토하고 압출된 제품의 성질을 분석하여 실제 공정에 이 바지하며 이론 계산과 실험을 비교함이 목적이다.