• 제목/요약/키워드: forward dynamic

검색결과 481건 처리시간 0.021초

온도변화에 따른 백금 실리사이드-엔 실리콘 접합의 전자 터널링 특성 (Electron Tunneling Characteristics of PtSi-nSi Junctions according to Temperature Variations)

  • 장창덕;이정석;이광우;이용재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.87-91
    • /
    • 1998
  • In this paper, We analyzed the current-voltage characteristics with n-type silicon substrates concentration and temperature variations (Room temperature, 50$^{\circ}C$, 75$^{\circ}C$) in platinum silicide and silicon junction. The electrical parameters of measurement are turn-on voltage, saturation current, ideality factor, barrier height, dynamic resistance in forward bias and reverse breakdown voltage according to variations of junction concentration of substrates and measurement temperature variations. As a result, the forward turn-on voltage, reverse breakdown voltage, barrier height and dynamic resistance were decreased but saturation currents and ideality factor were increased by substrates increased concentration variations in platinum silicide and n-silicon junction. In increased measurement temperature (RT, 50$^{\circ}C$, 75$^{\circ}C$), the extracted electrical parameter values of characteristics were rises by increased temperature variations according to the forward and reverse bias.

  • PDF

Motion predictive control for DPS using predicted drifted ship position based on deep learning and replay buffer

  • Lee, Daesoo;Lee, Seung Jae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.768-783
    • /
    • 2020
  • Typically, a Dynamic Positioning System (DPS) uses a PID feed-back system, and it often adopts a wind feed-forward system because of its easier implementation than a feed-forward system based on current or wave. But, because a ship's drifting motion is caused by wind, current, and wave drift loads, all three environmental loads should be considered. In this study, a motion predictive control for the PID feedback system of the DPS is proposed, which considers the three environmental loads by utilizing predicted drifted ship positions in the future since it contains information about the three environmental loads from the moment to the future. The prediction accuracy for the future drifted ship position is ensured by adopting deep learning algorithms and a replay buffer. Finally, it is shown that the proposed motion predictive system results in better station-keeping performance than the wind feed-forward system.

목뼈 가동 운동과 머리목 굽힘 운동이 만성 목통증 환자의 동적균형과 보행변인에 미치는 영향: 무작위 임상시험 (Effects of Cervical Mobilization and Craniocervical Flexion Exercise on the Dynamic Balance and Gait Variability in Chronic Neck Pain Patients: Randomized Controlled Trial)

  • 최태석;유병호;이상빈
    • 대한물리의학회지
    • /
    • 제15권2호
    • /
    • pp.31-38
    • /
    • 2020
  • PURPOSE: The aim of this study is to find a more efficient intervention method through a study of the gait variables and dynamic balance of chronic neck pain patients. METHODS: Forty subjects aged between 40 and 60 years were allocated randomly to two groups; The first group performed PA (Posteroanterior Mobilization), and the second group conducted CCF (Craniocervical Flexion Exercise). The gait variability measured the speed, cadence, and dynamic balance in the forward, leftward, rightward, and rearward directions. An independent t-test, Wilcoxon signed-rank test, and paired t-test were used for statistical analysis. RESULTS: In the dynamic balance measurements, the variability of PA (p < .000) and CCF (p < .000) in the rightward direction, PA (p < .004) in leftward direction and forward direction increased significantly (p < .013). In an analysis of the gait variability, the cadence increased significantly in the PA group (p < .022) and not significantly in the CCF group (p < .056). On the other hand, there was no increase in the speed variable, in the PA group (p < .437). In the CCF group, the cadence increased significantly (p < .022). The differences in the PA and CCF group differences were not significant. CONCLUSION: The PA group showed a significant increase in the forward (p < .013), leftward (p < .004), and rightward directions (p < .000). Speed was significant in the CCF group, and cadence was significant in the PA group. The dynamic Balance was effective in the rightward direction in both groups, but there was no significant difference between the two groups.

MW 풍력터빈의 피드포워드 제어 (Feed Forward Control of the MW Wind Turbine)

  • 임창희;남윤수;김정기;최한순
    • 풍력에너지저널
    • /
    • 제2권1호
    • /
    • pp.82-89
    • /
    • 2011
  • his dissertation is on power control system for MW-class wind turbine. Especially, the control purpose is reduction in electrical power and rotor speed. The base control structure is power curve tracking control using variable speed variable pitch operational type. For the reduction of fluctuations, more control algorithm is needed in above rated wind conditions. Because general pitch control system is low dynamic response as compared with the wind speed change. So, this paper introduces about the pitch feed forward control to minimize fluctuations of the electrical power and rotor speed. To maintain rated electrical power, the algorithm of feed forward control adds feed forward pitch amount to the pitch command of power curve tracking control. The effectiveness of the feed forward control is verified through the simulation.

The Effect of Dynamic Neuromuscular Stabilization (DNS) on the Respiratory Function of Subjects with Forward Head Posture (FHP)

  • Bae, Won-Sik
    • 대한물리의학회지
    • /
    • 제16권3호
    • /
    • pp.55-64
    • /
    • 2021
  • PURPOSE: The purpose of this study was to apply dynamic neuromuscular stabilization (DNS) to subjects with forward head posture (FHP) and to compare its effects on respiratory function as against the conventional neck stabilization exercise and neck stretching and extensor strengthening exercises. METHODS: The whole-body posture measurement system was used to measure the degree of FHP, and a spirometer and a respiratory gas analyzer were used to measure the respiratory function. After the intervention was completed, the changes over time were analyzed in the DNS group, the neck stabilization exercise group, and the neck stretching and extensor strengthening exercise group. The inter-group difference in the changes was also analyzed. A repeated ANOVA was performed to compare the respiratory function according to the period between the three groups, and the least significant difference (LSD) method was used for the post hoc test. RESULTS: After the 6-week exercise period, respiratory functions, such as forced vital capacity (FVC), forced expiratory volume for 1 second (FEV1), forced expiratory volume for 1 sec/forced vital capacity (FEV1/FVC), maximum oxygen intake (VO2max), and the volume of expired gas (VE), significantly improved according to the period (p < .05), but no inter-group differences were found. CONCLUSION: DNS is an effective training method, and can be applied along with neck stabilization exercise and neck stretching and extensor strengthening exercises, which are widely used in clinical practice, to people with FHP who cannot directly perform neck exercises to improve their respiratory function.

Forward-Looking Ultrasound Imaging Transducer : II. Fabrication and Experimental Results

  • Lee, Chankil
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권2E호
    • /
    • pp.76-84
    • /
    • 1996
  • The experimental testing results of the large-scale version of a forward-looking ultrasound imaging catheter(FLUIC) are presented, along with the fabrication techniques used, experimental methods, and comparisons of the measured and simulated results. The transducer model is verified by measuring the electrical impedance of the transducer. The pulse width, beamwidth, and the dynamic range for both transmit and pulse-echo response of the fabricated FLUIC are also analyzed. The experimental results conformed its forward-looking imaging capability and the sources of discrepancies between the simulated and experimental beam profiles are addressed.

  • PDF

Modeling, Identification and Control of a Redundant Planar 2-DOF Parallel Manipulator

  • Zhang, Yao-Xin;Cong, Shuang;Shang, Wei-Wei;Li, Ze-Xiang;Jiang, Shi-Long
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.559-569
    • /
    • 2007
  • In this paper, the dynamic controller design problem of a redundant planar 2-dof parallel manipulator is studied. Using the Euler-Lagrange equation, we formulate the dynamic model of the parallel manipulator in the joint space and propose an augmented PD controller with forward dynamic compensation for the parallel manipulator. By formulating the controller in the joint space, we eliminate the complex computation of the Jacobian matrix of joint angles with end-effector coordinate. So with less computation, our controller is easier to implement, and a shorter sampling period can be achieved, which makes the controller more suitable for high-speed motion control. Furthermore, with the combination of static friction model and viscous friction model, the active joint friction of the parallel manipulator is studied and compensated in the controller. Based on the dynamic parameters of the parallel manipulator evaluated by direct measurement and identification, motion control experiments are implemented. With the experiments, the validity of the dynamic model is proved and the performance of the controller is evaluated. Experiment results show that, with forward dynamic compensation, the augmented PD controller can improve the tracking performance of the parallel manipulator over the simple PD controller.

가상 슬레이브 정동역학 보정에 기반한 원격제어 시스템 개발 (Development of Teleoperation System with a Forward Dynamics Compensation Method for a Virtual Robot)

  • 양정연
    • 한국콘텐츠학회논문지
    • /
    • 제18권7호
    • /
    • pp.322-329
    • /
    • 2018
  • 원격제어는 명령을 전달하는 마스터 장치와 원격지에 위치한 로봇을 슬레이브로 간주하는 방식이다. 이러한 원격제어의 경우, 양 에이전트 간의 동특성, 전송속도 차이에 의해 가상환경을 이용한 가상 슬레이브를 통해 조작자가 원격제어의 특수성을 선행 수행하는 것이 일반적이다. 기존의 가상 슬레이브는 연산량의 한계에 의해 동역학적 효과를 제거한 그래픽 모델로 구성하는 것이 일반적이나 이는 원격지 로봇의 동특성이 무시되어 실제 원격제어시의 실재감을 살리기 어렵다. 본 논문에서는 로봇의 정동역학 모델을 이용하여 이를 원격제어에 활용하고, 가상 환경에서 상대적으로 느린 제어 주기에 의해 발생하는 정동역학의 수치오류를 보완하는 보상 기법을 제안하고 이를 실제 환경과의 원격제어와 비교하고자 한다.

DYNAMIC SIMULATION MODEL OF A HYBRID POWERTRAIN AND CONTROLLER USING CO-SIMULATION - PART I: POWERTRAIN MODELLING

  • Cho, B.;Vaughan, N.D.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.459-468
    • /
    • 2006
  • The objective of this paper is the development of the forward-looking dynamic simulation model of a hybrid electric vehicle(HEV) for a fuel economy study. The specification of the vehicle is determined based on two factors, engine peak power to curb weight ratio and specific engine power. The steady state efficiency models of the powertrain components are explained in detail. These include a spark ignition direct injection(SIDI) engine, an integrated starter alternator(ISA), and an infinitely variable transmission(IVT). The paper describes the integration of these models into a forward facing dynamic simulation diagram using the AMESim environment. Appropriate vehicle and driver models have been added and described. The controller was designed in Simulink and was combined with the physical powertrain model by the co-simulation interface. Finally, the simulation results of the HEV are compared with those of a baseline vehicle in order to demonstrate the fuel economy potential. Results for the vehicle speed error and the fuel economy over standard driving cycles are illustrated.

A 2.5 V 109 dB DR ΔΣ ADC for Audio Application

  • Noh, Gwang-Yol;Ahn, Gil-Cho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권4호
    • /
    • pp.276-281
    • /
    • 2010
  • A 2.5 V feed-forward second-order deltasigma modulator for audio application is presented. A 9-level quantizer with a tree-structured dynamic element matching (DEM) was employed to improve the linearity by shaping the distortion resulted from the capacitor mismatch of the feedback digital-toanalog converter (DAC). A chopper stabilization technique (CHS) is used to reduce the flicker noise in the first integrator. The prototype delta-sigma analogto-digital converter (ADC) implemented in a 65 nm 1P8M CMOS process occupies 0.747 $mm^2$ and achieves 109.1 dB dynamic range (DR), 85.4 dB signal-to-noise ratio (SNR) in a 24 kHz audio signal bandwidth, while consuming 14.75 mW from a 2.5 V supply.