• Title/Summary/Keyword: fortified food

Search Result 235, Processing Time 0.033 seconds

Impact of Approval Goals and Motivation on Consumer Intention: A Retail Context

  • AKHTAR, Muhammad Farooq;SUKI, Norazah Mohd
    • Journal of Distribution Science
    • /
    • v.20 no.12
    • /
    • pp.23-33
    • /
    • 2022
  • Purpose: The objective of the study is to examine the role of approval goals, subjective norm, internal motivation, external motivation, attitude towards behavior, and perceived behavioral control on retail consumer's intention to consume fortified food in Pakistan. Research design, data, and methodology: The study was quantitative in nature. That is why the data were collected from 384 respondents approaching retail stores of Lahore, Gujranwala, and Faisalabad using mall intercept survey. Partial least squares structural equation modeling (PLS-SEM) was used to analyze the data. Results: The results show that approval goals significantly influence subjective norms. Secondly, subjective norms positively influence internal and external motivation. Thirdly, attitude towards behavior and internal motivation significantly impacted on intention. However, the findings of the study show, non-significant relationship of external motivation and perceived behavioral control with intention to consume fortified food. Conclusion: Theory of reasoned goal pursuit was used to investigate consumer intention to consume fortified food in Pakistan. This study is helpful for the marketers to create a word-of-mouth strategy to enhance positive word of mouth for the company, which ultimately beneficial to develop the distribution strategy of the firm. Fortified food is full of health enriched ingredients which is beneficial for society at large.

The Tissue Distribution of Lutein in Laying Hens Fed Lutein Fortified Chlorella and Production of Chicken Eggs Enriched with Lutein

  • An, Byoung-Ki;Jeon, Jin-Young;Kang, Chang-Won;Kim, Jin-Man;Hwang, Jae-Kwan
    • Food Science of Animal Resources
    • /
    • v.34 no.2
    • /
    • pp.172-177
    • /
    • 2014
  • Two experiments were conducted to investigate the dietary effects of conventional or lutein fortified chlorella on lutein absorptions, the tissue distributions and the changes in lutein content of eggs in laying hens. In Exp 1, a total of one hundred and fifty, 70 wk-old Hy-Line brown layers were divided into three groups with five replicates and fed with each experiment diet (control diet, diet with 1% conventional chlorella or lutein fortified chlorella) for 2 wk, respectively. The egg production in groups fed diets containing both chlorella powders were higher than that of the control group (p<0.01). With chlorella supplementations, the yolk color significantly increased, although there were no significant differences in the eggshell qualities. The lutein contents of serum, liver and growing oocytes were greatly increased by feeding conventional or lutein fortified chlorella (p<0.01). In Exp. 2, a total of ninety 60 wk-old Hy-Line brown layers were assigned into three groups with three replicates per group (10 birds per replicate). The birds were fed with one of three experimental diets (0, 0.1 or 0.2% lutein fortified chlorella) for 2 wk, respectively. The egg production was not affected by dietary treatments. The egg weight in the group fed with diet containing 0.2% of lutein fortified chlorella was higher than that of the control (p<0.05). As the dietary chlorella levels increased, the daily egg mass linearly increased, although not significantly. The yolk colors in groups fed diets containing lutein fortified chlorella were dramatically increased as compared to the control (p<0.001). The lutein in chicken eggs significantly increased when fed with 0.2% of lutein fortified chlorella (p<0.01). These results suggested that the dietary lutein derived from chlorella was readily absorbed into the serum and absorbed by the liver with growing oocyte for commercial laying hens. Particularly, the lutein fortified chlorella was a valuable natural source for the production of lutein enriched chicken eggs.

ACE-inhibitory Effect and Physicochemical Characteristics of Yogurt Beverage Fortified with Whey Protein Hydrolysates

  • Lim, Sung-Min;Lee, Na-Kyoung;Park, Keun-Kyu;Yoon, Yoh-Chang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.886-892
    • /
    • 2011
  • This study investigated the ACE-inhibitory effect of yogurt beverage fortified with hydrolysates as well as the suitability of hydrolysates as a nutraceutical additive to yogurt beverage. Three whey protein hydrolysates hydrolyzed by alcalase, protamex, and trypsin were each added to yogurt beverage at concentrations of 1.25, 2.5, and 5 mg/mL. Yogurt beverage fortified with 2.5 mg/mL of hydrolysates had 61-69% ACE-inhibitory activity, whereas yogurt beverage fortified with 5 mg/mL of hydrolysates showed 74% ACE-inhibitory activity. There were no significant differences in ACE-inhibitory activity between the alcalase or protamex hydrolysates during storage; however, trypsin hydrolysate exhibited significant differences. On the other hand, physicochemical characteristics such as pH (3.47-3.77), titratable acidity (0.81-0.84%), colority, viable cell count, and sensory qualities were not significantly different among the tested yogurt beverage samples during storage. These results showed that yogurt beverage fortified with whey protein hydrolysates maintained antihypertensive activity and underwent no unfavorable changes in physicochemical characteristics regardless of enzyme type.

Stability of Immunoglobulin G(IgG) by Heat Treatment (면역단백질 G(IgG)의 열처리에 대한 안정성)

  • 박종대;손동화;정관섭
    • Food Science and Preservation
    • /
    • v.10 no.2
    • /
    • pp.236-240
    • /
    • 2003
  • This study was carried out to obtain fundamental data when developing new colostrum component fortified milk products. Residual immunoglobulin G (IgG) activities of both IgG fortified milk products under different pasteurization conditions and colostrum fortified milk powder products under different dissolving temperatures were measured. In the study, residual IgG activities of raw milk and IgG (50 mg and 250 mg) fortified milk products were sharply reduced upon increasing the temperature of heat treatment. After the low temperature long time (LTLT) treatment residual IgG activities of raw milk, IgG 50 mg and 250 mg fortified milk products decreased to 79%, 30% and 21.6%, as compared to those before heat treatment respectively. However, almost no residual IgG activities were detected when IgG fortified milk was heated at 95$^{\circ}C$ for 15 sec. There was no significant change in the residual IgG activities of IgG fortified milk powder products upon different dissolving temperatures (30$^{\circ}C$, 40$^{\circ}C$, 50$^{\circ}C$ and 60$^{\circ}C$).

Review for Selenium-fortified Functional Products of Livestock (셀레늄 강화 기능성 축산물에 관한 고찰)

  • Kim, W.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.5 no.1
    • /
    • pp.36-56
    • /
    • 2003
  • Selenium(Se) is an essential trace element in the human body. Main function of this element is a catalytic part of antioxidant enzymes that protect cells against the attacks of free radicals that are produced during normal metabolism of the body. Se is also essential for normal function of the immune system and thyroid gland. It also appears to be a key nutrient in counteracting the development of virulence and inhibiting HIV(human immunodeficiency virus) progression to AIDS. It is also required for sperm motility and reduces the depression. Therefore, it is very meaningful that livestock producers generate Se-fortified animal products, such as Se-egg, Se-milk, Se-pork, Se-chicken and Se-beef from the point of producers as well as human heath. However, regulation on Se usage and Se-fortified food/feed is far from being clear in Korea even though Se should be carefully monitored because of its toxicity. Thus, one has to be aware of Se properties when designing Se-fortified animal products.

The Stability of Water-soluble and Fat-soluble vitamin in milk by Heat treatments (수용성비타민과 지용성비타민의 가열에 대한 안정성)

  • 허정윤;황인경
    • Korean journal of food and cookery science
    • /
    • v.18 no.5
    • /
    • pp.487-494
    • /
    • 2002
  • This study was conducted to investigate the thermal stability of water-soluble and fat-soluble vitamins dissolved in water and milk by various heat treatments. Vitamin samples were prepared by dissolving them in water and milk at various concentrations, and were heat treated for 30 min at 65$\^{C}$, 15 sec at 85$\^{C}$, 5 sec at 100$\^{C}$, 121$\^{C}$ at 15 min, the levels of residual vitamin were measured by using HPLC. Milk samples were fortified with vitamins before and after UHT treatment. As heating over 100$\^{C}$, riboflavin in water were destructed more than 92% but fortified in milk showed less than 20% destruction, suggesting that riboflavin was protected by milk components. Also retinol heated ever 100$\^{C}$ was more stable in milk than in water. L-Ascorbic acid and cholecalciferol(D$_3$) showed a similar destruction rate in water and in fortified milk. L-ascorbic acid was easily destructed by UHT treatment. Destruction of thiamin and tocopherol was increased in fortified milk. Among tour capsulated water-soluble vitamins, L-ascorbic acid was much more stable compared with powder form. Nicotinic acid and folic acid either in capsule or powder form showed a slight destruction by heat treatment. The results suggested that the fortification of unstable vitamins such as L-ascorbic acid, thiamin, tocopherol and cholecalciferol(D$_3$) should be made in milk after heat treatment.

Iron Bioavailability in Iron-fortified Market Milk (철분강화 우유의 생이용성 평가)

  • 김윤지
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.705-709
    • /
    • 1999
  • To evaluate iron bioavailability in iron fortified milk, in vitro and in vivo method were used. Low molecular weight components(ILC) from milk was isolated and iron was added, then soluble iron from ILC iron complex was determined. Each iron sources and extrinsically labelled with FeCl3 was used for measuring absorption rate of iron from ILC radiolabelled iron complexes as radioiron absorption into the blood one hour after injection into ligated duodenal loops of iron deficient rats. Iron absorption rate was in the order of ferrous lactate(25.56%)$\geq$ferric citrate(24.71%)$\geq$ferrous sulfate(19.67%) when 100ppm iron was used. In separate experiments, iron fortified milks with each iron sources were gavaged into iron deficient rats. When 25ppm iron was added to milk, the order of iron absorption was ferrous sulfate(12.52%)>ferrous lactate(8.07%)>ferric citrate(6.52%) (p<0.05). When 100ppm iron was added to milk, absorption rate was decreased compared to the treatments with added 25ppm of iron. Absorption rate of ferrous sulfate(5.34%) from milk added 100ppm iron was highly lowered, but ferric citrate(6.45%) was not significantly changed. The absorption rate of ferrous lactate(5.82%) was 70% of 25ppm iron added milk.

  • PDF

A Study on the Content of Minerals in Fortified Food (영양강화식품 중 무기질 함량 조사연구)

  • Kim, Myeong-Gil;Kim, Young-Sug;Kim, Young-Su;Lee, Seong-Bong;Ryu, Kyong-Shin;Yoon, Mi-Hye;Lee, Jong-Bok
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.2
    • /
    • pp.99-104
    • /
    • 2014
  • This study was done to analyze the contents of minerals and to investigate the ratio of measured values to labeled values and to analyze the ratio of calcium to other minerals in 68 specimen with minerals - fortified commercial beverages, noodles, cereals and grain products. Content of calcium, iron and zinc in samples after microwave digestion was analyzed with an ICP-OES. The measured values of calcium were ranged 82.2~293.1% of the labeled values in 38 samples composed calcium - fortified commercial beverages, noodles, cereals and grain products. The measured values of iron and zinc were ranged 83.3~301.0%, 90.1~314.1% of the labeled values in minerals - fortified commercial beverages, noodles, cereals and grain products, 42, 24 samples. The Ca : Fe ratios were 90.55 (50.55~220.64) in fruit & vegetable juice, 850.41 in fruit & vegetable beverage, 553.49 in blended beverage, 179.07 (118.37~238.01) in soy milk, 204.39(41.64~397.52) in noodle, 296.97(121.64~868.88) in fried noodle, 30.89(15.69~62.05) in cereal and 7.73(0.22~49.92) in grain product. The Ca : P ratios were 1.44(0.96~1.98) in fruit & vegetable juice, 1.92 in fruit & vegetable beverage, 1.66 in blended beverage, 4.23(2.25~7.72) in soy milk, 1.14(0.28~1.97) in noodle, 1.88(1.17~2.42) in fried noodle, 1.29(0.87~2.92) in cereal and 0.30(0.06~1.57) in grain product. The Ca : Mg ratios were 1.85(0.87~5.04) in fruit & vegetable juice, 28.72 in fruit & vegetable beverage, 2.97 in blended beverage, 5.27(2.93~9.36) in soy milk, 3.97(1.34~7.57) in noodle, 6.77(4.63~10.78) in fried noodle, 4.40(2.30~12.55) in cereal and 1.17(0.23~7.48) in grain product. These results suggest calcium contents and the ratio of calcium contents to other minerals in calcium-fortified food products should be strictly controlled. Moreover, to avoid problems with Excessive nutrition, there must be initiatives for better understanding on food labelling and nutrition for fortified food.

Safety Assessments between Commercial Milk and DHA Fortified Milk of Dairy Cows Fed Feeds Containing Protected Fish Oil Treated with Formaldehyde (시중 일반우유와 포름알데히드로 보호 처리된 어유 첨가 사료를 먹인 DHA 강화우유의 안전성 연구)

  • Chun, Su-Hyun;Nam, Mi-Hyun;Hong, Chung-Oui;Yang, Sung-Yong;Yoo, Jin-Ah;Seo, Dong-Won;Chung, Il-Joong;Lee, Kwong-Won
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.349-354
    • /
    • 2011
  • Our objective in this study is to assess the safety of docosahexaenoic acid (DHA) fortified milk of dairy cows fed feeds containing protected fish oil treated with formaldehyde by analyzing formaldehyde concentration in commercial milk and DHA fortified milk of dairy cows fed formaldehyde treated feed. There are 3 milk samples in this study: Commercial milk (CM), DHA fortified milk for Kid (DHA-K) and DHA fortified milk for Baby (DHA-B). We confirm the fresh quality of these three samples by physicochemical tests. In fat content result, three groups are significantly different at the p < 0.05 by Duncan's multiple range test, but fat content of group DHA-K is about half the level of the other two groups. Protein content of group DHA-K is 1 % higher than other two groups. According to the analysis result of DHA content of DHA fortified milk, DHA content of DHA-B is two-fold higher than DHA-K. Similar pattern was seen in the intake based on age. According to HPLC analysis result of formaldehyde concentration in milk, commercial milk and DHA fortified milk are between 0.013 ppm and 0.057 ppm which is formaldehyde standard level in fresh milk settled in WHO (World Health Organization). Three groups have no significantly differences at the p < 0.05 by Duncan's multiple range test. For this reason, it can be concluded that there is no transition of formaldehyde from dairy cows fed formaldehyde treated feeds to its produced milk. Safety about formaldehyde of DHA fortified milk of dairy cows fed formaldehyde treated feeds is considered similar to commercial milk.

Effects of sn-2 palmitic acid-fortified vegetable oil and fructooligosaccharide on calcium metabolism in growing rats fed casein based diet

  • Lee, Yeon-Sook;Kang, Eun-Young;Park, Mi-Na;Choi, You-Young;Jeon, Jeong-Wook;Yun, Sung-Seob
    • Nutrition Research and Practice
    • /
    • v.2 no.1
    • /
    • pp.3-7
    • /
    • 2008
  • This study was carried out to investigate the efficacy of sn-2 palmitic acid-fortified vegetable oil (Sn2PA) on calcium absorption and to confirm the synergistic effects of fructooligosaccharide on calcium absorption. Male SD rats were fed 6 kinds of casein based diets containing vegetable oil (control), sn-2 palmitic acid-fortified vegetable oil (Sn2PA) and Sn2PA with fructooligosaccharide(Sn2PAFO) in two levels of calcium (normal 0.5% and high 1.0%) for 3 weeks. Total lipids, cholesterol, triglyceride and calcium in blood were measured. Feces were collected using cages for 4 days. Serum concentrations of total lipids and calcium were not significantly different among groups. However, serum triglyceride was significantly decreased by fructooligosaccharide supplementation regardless of dietary calcium level. The lipid absorption was not significantly different among experimental groups. Calcium absorption was significantly higher in Sn2PAFO group than other groups. Calcium solubility of intestine was increased by sn-2 palmitic acid supplementation. These results suggest that sn-2 palmitic acid and fructooligosaccharide supplementation could be beneficial for baby foods including infant formula, with regard to increasing absorption of calcium by more soluble calcium in the small intestinal content.