• Title/Summary/Keyword: formulation

Search Result 6,676, Processing Time 0.033 seconds

Chemical Stabilization Study for Sulfonylurea Herbicides (Sulfonylurea계(系) 제초제(除草劑)의 화학적(化學的) 안정성(安定性))

  • Chen, Chia-Chung
    • Korean Journal of Weed Science
    • /
    • v.17 no.2
    • /
    • pp.135-138
    • /
    • 1997
  • Sulfonylureas are highly active herbicides which can be applied at very low rate(10-50g/ha) to control broadleaf weeds. The nature of this category of compound is, however, very unstable toward hydrolysis. Therefore, the preparation of these compounds as liquid formulation was not possible. Most of the current formulations of sulfonylurea are in dry forms such as water dispersible granule or wettable powder. Even in these dry forms, the active ingredients also encounter significant chemical decomposition. This study involves the preparation of the sulfonylurea salts by reacting the parent compound with base such as sodium hydroxide. The salt becomes stable toward hydrolysis and it turns soluble when diluted with water. This discovery makes the preparation for liquid formulation or soluble granule of sulfonylurea possible. The stoichiometry of base added to the neutral sulfonylurea is controlled quite precisely. The base has to be added enough to quench the acidic impurities in the technical material and to convert the active ingredient into salt. However, the base should not be overused to cause further saponification of the sulfonylurea salts. The chemical nature of these compounds is presented and the chemical reaction is described. New soluble liquid formulation and solid granule formulation of sulfonylurea are suggested.

  • PDF

EXTEMPORANEOUS MICELLAR SOLUBILIZATION OF TITRATED EXTRACT OF CENTELLA ASIATICA IN AQUEOUS MEDIA

  • Kim, Jae-Hyun;Kim, Chong-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.284-284
    • /
    • 1996
  • Titrated Extract of Centella asiatica (TECA) is a poorly water-soluble extract from the Centella asiatica. Despite excellent wound preparation causes pain due to a low aqueous solubility and high hypertonicity and therefore, the patient's compliance of this drug is low. The objective of this study is to design a formulation of TECA with an improved therapeutic applicability via an adequate solubilization. A mixture of propylene glycol and ethoxylated hydrogenated caster oil achieved an acceptable solubilization of TECA (i.e. 10%) via a formulation of micelle. A preparation of extemporaneous TECA micelle was achieved by a dilution of the original micellar formulation with either water or saline. An estimated distribution of particle size was between 15.9 and 32.6 ㎜. The osmotic pressure of the formulation was found to be much lower than that found In a commercially available injectable (i.e. Madecassole). The erthrocytic hemolysis of micellar solution was lower than that with the conventional dosage form, consistent with the osmotic pressure data. Pain score after an injection of the micellar solution was assessed by the hind-paw writhing test using ICR mice and compared with that found with the conventional injectable. The data indicated that the injection of the micellar solution was a significantly less painful. These results indicated that a micellar solubilization, followed by an extemporaneous dilution, is a novel formulation of TECA with an improved therapeutic applicability.

  • PDF

A Case of Skin Eruption Occurred after Switching Formulation of Quetiapine Fumarate (Quetiapine Fumarate의 제형 변경 후 발생한 피부 발진 1예)

  • Kwon, Yong-Seok;Lim, Se-Won
    • Korean Journal of Biological Psychiatry
    • /
    • v.16 no.4
    • /
    • pp.266-270
    • /
    • 2009
  • Adverse drug reactions are very common in clinical practice, and skin is one of the most frequent organs for adverse drug reactions. We report a case of a 71-year-old male patient who developed skin eruptions after switching formulation of quetiapine immediate release(IR) to quetiapine extended release(XR). He had been taking quetiapine IR(400mg/day) for treatment of manic episode which was developed one year ago. The patient showed great improvement of symptoms after taking quetiapine IR for about one year, thus dosage of medication was reduced to 50mg/day on the average. Unfortunately dose reduction has tended to worsen symptoms, so dose of quetiapine was increased again to 200mg/day with formulation changes to XR. Two days after he took new formulation, erythematous papules were occurred over his anterior neck and ventral side of left wrist. As he stopped quetiapine XR, the skin lesions gradually subsided. And he was successfully treated with readministration of quetiapine IR without any skin lesions.

  • PDF

Rotor High-Speed Noise Prediction with a Combined CFD-Kirchhoff Method (CFD와 Kirchhoff 방법의 결합을 이용한 로터의 고속 충격소음 해석)

  • 이수갑;윤태석
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.607-616
    • /
    • 1996
  • A combined computational fluid dynamics(CFD)-Kirchhoff method is presented for predicting high-speed impulsive noise generated by a hovering blade. Two types of Kirchhoff integral formula are used; one for the classical linear Kirchhoff formulation and the other for the nonlinear Kirchhoff formulation. An Euler finite difference solver is solved first to obtain the flow field close to the blade, and then this flow field is used as an input to a Kirchhoff formulation to predict the acoustic far-field. These formulas are used at Mach numbers of 0.90 and 0.95 to investigate the effectiveness of the linear and nonlinear Kirchhoff formulas for delocalized flow. During these calculiations, the retarded time equation is also carefully examined, in particular, for the cases of the control surface located outside of the sonic cylinder, where multiple roots are obtained. Predicted results of acoustic far-field pressure with the linear Kirchhoff formulation agree well with experimental data when the control surface is at the certain location(R=1.46), but the correlation is getting worse before or after this specific location of the control surface due to the delocalized nonlinear aerodynamic flow field. Calculations based on the nonlinear Kirchhoff equation using a linear sonic cylinder as a control surface show a reasonable agreement with experimental data in negative amplitudes for both tip Mach numbers of 0.90 and 0.95, except some computational integration problems over a shock. This concliudes that a nonlinear formulation is necessary if the control surface is close to the blade and the flow is delocalized.

  • PDF

Ultimate strength of initially deflected plate under longitudinal compression: Part I = An advanced empirical formulation

  • Kim, Do Kyun;Poh, Bee Yee;Lee, Jia Rong;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.247-259
    • /
    • 2018
  • In this study (Part I), an advanced empirical formulation was proposed to predict the ultimate strength of initially deflected steel plate subjected to longitudinal compression. An advanced empirical formulation was proposed by adopting Initial Deflection Index (IDI) concept for plate element which is a function of plate slenderness ratio (${\beta}$) and coefficient of initial deflection. In case of initial deflection, buckling mode shape, which is mostly assumed type in the ships and offshore industry, was adopted. For the numerical simulation by ANSYS nonlinear finite element method (NLFEM), with a total of seven hundred 700 plate scenarios, including the combination of one hundred (100) cases of plate slenderness ratios with seven (7) representative initial deflection coefficients, were selected based on obtained probability density distributions of plate element from collected commercial ships. The obtained empirical formulation showed good agreement ($R^2=0.99$) with numerical simulation results. The obtained outcome with proposed procedure will be very useful in predicting the ultimate strength performance of plate element subjected to longitudinal compression.

Iterative coupling of precise integration FEM and TD-BEM for elastodynamic analysis

  • Lei, Weidong;Liu, Chun;Qin, Xiaofei;Chen, Rui
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.317-326
    • /
    • 2018
  • The iterative decomposition coupling formulation of the precise integration finite element method (FEM) and the time domain boundary element method (TD-BEM) is presented for elstodynamic problems. In the formulation, the FEM node and the BEM node are not required to be coincident on the common interface between FEM and BEM sub-domains, therefore, the FEM and BEM are independently discretized. The force and displacement converting matrices are used to transfer data between FEM and BEM nodes on the common interface between the FEM and BEM sub-domains, to renew the nodal variables in the process of the iterations for the un-coincident FEM node and BEM node. The iterative coupling formulation for elastodynamics in current paper is of high modeling accuracy, due to the semi-analytical solution incorporated in the precise integration finite element method. The decomposition coupling formulation for elastodynamics is verified by examples of a cantilever bar under a Heaviside-type force and a harmonic load.

Geometrically Nonlinear Analysis of Hinged Cylindrical Laminated Composite Shells (활절로 지지된 원통형 적층복합쉘의 기하학적 비선형 해석)

  • Han, Sung-Cheon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.1-10
    • /
    • 2012
  • In the present study, an Element-Based Lagrangian Formulation for the nonlinear analysis of shell structures is presented. The strains, stresses and constitutive equations based on the natural co-ordinate have been used throughout the Element-Based Lagrangian Formulation of the present shell element which offers an advantage of easy implementation compared with the traditional Lagrangian Formulation. The Element-Based Lagrangian Formulation of a 9-node resultant-stress shell element is presented for the anisotropic composite material. The element is free of both membrane and shear locking behavior by using the assumed natural strain method such that the element performs very well in thin shell problems. The arc-length control method is used to trace complex equilibrium paths in thin shell applications. Numerical examples for laminated composite curved shells presented herein clearly show the validity of the present approach and the accuracy of the developed shell element.

DELTA-FORMULATION OF A SEGREGATED NAVIER-STOKES SOLVER WITH A DUAL-TIME INTEGRATION (이중시간적분법을 이용한 순차적 유동해석 기법)

  • Kim, J.;Tack, N.I.;Kim, S.B.;Kim, M.H.;Lee, W.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.31-35
    • /
    • 2006
  • The delta-formulation of the Navier-Stokes equations has been popularly used in the aerodynamics area. Implicit algorithm can be easily implemented in that by using Taylor series expansion. This formulation is extended for an unsteady analysis by using a dual-time integration. In the meanwhile, the incompressible flows with heat transfers which occur in the area of thermo-hydraulics have been solved by a segregated algorithm such as the SIMPLE method, where each equation is discretised by using an under-relaxed deferred correction method and solved sequentially. In this study, the dual-time delta formulation is implemented in the segregated Navier-Stokes solver which is based on the collocated cell-centerd scheme with un unstructured mesh FVM. The pressure correction equation is derived by the SIMPLE method. From this study, it was found that the Euler dual-time method in the delta formulation can be combined with the SIMPLE method.

  • PDF

Design and Implementation of “Concept Wizard” Supporting Query Formulation with Concept Term Expansion (개념 검색어 확장을 통해 질의 형식화를 도와주는 “개념 마법사”의 설계 및 구현)

  • Kang, Hyun-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.437-444
    • /
    • 2002
  • There are some important that development of tools to retrieve information by simple operation in large of nave users in the world wide web. In general, query formulation method and operators are variety, not easy to formulate query in information retrieval system or web based retrieval engine. In this paper, we propose "Concept Wizard" to support query formulation with concept term expansion in natural language query information retrieval system. The Concept Wizard are interactively supporting query formulation using thesaurus and Providing plug-in on the web.

An improved parametric formulation for the variationally correct distortion immune three-noded bar element

  • Mukherjee, Somenath;Manju, S.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.261-281
    • /
    • 2011
  • A new method of formulation of a class of elements that are immune to mesh distortion effects is proposed here. The simple three-noded bar element with an offset of the internal node from the element center is employed here to demonstrate the method and the principles on which it is founded upon. Using the function space approach, the modified formulation is shown here to be superior to the conventional isoparametric version of the element since it satisfies the completeness requirement as the metric formulation, and yet it is in agreement with the best-fit paradigm in both the metric and the parametric domains. Furthermore, the element error is limited to only those that are permissible by the classical projection theorem of strains and stresses. Unlike its conventional counterpart, the modified element is thus not prone to any errors from mesh distortion. The element formulation is symmetric and thus satisfies the requirement of the conservative nature of problems associated with all self-adjoint differential operators. The present paper indicates that a proper mapping set for distortion immune elements constitutes geometric and displacement interpolations through parametric and metric shape functions respectively, with the metric components in the displacement/strain replaced by the equivalent geometric interpolation in parametric co-ordinates.