• 제목/요약/키워드: forming force

검색결과 480건 처리시간 0.281초

내력상태계수 도입을 통한 RC보의 전단강도분석 (Shear Strength Incorporated with Internal Force State Factor in RC Slender Beams)

  • 정제평;김희정;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.912-917
    • /
    • 2003
  • In this paper a new truss modeling technique for describing the beam shear resistance mechanism is proposed based on the reinterpretation of the well-known relationship between shear and the rate of change of bending moment in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear resistance can be gained by viewing the internal stress filed in terms of the superposition of two base components of shear resistance; arch action and beam action. The arch action can be described as a simple tied-arch which is consisted of a curved compression chord and a tension tie of the longitudinal steel, while the beam action between the two chords can be modeled as a membrane shearing element with forming a smeared truss action. The compatibility of deformation associated to the two action is taken into account by employing an experimental factor or internal state force factor a. Then the base equation of V=dM/dx is numerically duplicated. The new model was examined by the 362 experimental results. The shear strength predicted by the internal force state factor a show better correlation with the tested values than the present shear design.

  • PDF

순 티탄늄 판재의 프레스 성형성 평가(제 1보) (Evaluation of press formability of pure titanium sheet)

  • 김영석;인정훈
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.380-388
    • /
    • 2016
  • 본 논문에서는 판형 열교환기 등에 널리 이용되고 있는 순 티타늄 판재의 프레스 성형성을 평가하기 위해 인장실험을 수행하였고 인장실험결과를 가장 잘 피팅할 수 있는 가공경화 모델을 제안하였다. 또한 항복곡면의 도출을 위해 단축변형, 평면변형, 순수전단변형 등 다양한 변형모드 하에서의 인장실험을 실시하였다. 이 제안된 모델을 Hora의 수정된 최대하중조건식에 적용하여 프레스 성형성을 평가하기 위해서 널리 사용되고 있는 성형한계선을 예측하였고 그 결과를 장출성형실험에서 구한 성형한계선과 비교하였다. 도출한 항복곡면을 잘 묘사하기 위한 이방성 항복조건식과 본 연구에서 제안된 가공경화 모델은 순 티타늄 판재의 프레스 성형성의 척도인 성형한계선을 잘 예측함을 알 수 있었다.

$ CO_2$레이저 합체박판 용접부의 기계적 물성평가 (Evaluation of Mechanical Properties of Welded Metal in Tailored Steel Sheet Welded by $ CO_2$ Laser)

  • 구본영;금영탁
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.142-150
    • /
    • 2001
  • Automotive manufactures have taken more interests in tailored sheet metals for improving the rigidity, weight reduction, crash durability, and cost savings so that their application to auto-bodies has been increased. However, since the tailored sheet metals do not behave like un-welded sheet metals in press forming operations, the stamping engineers no longer rely only on conventional forming techniques. Futhermore, there is no clear understanding of the characteristics of welded metal which influence the overall press formability of tailored sheet metals. Recently, the computer simulations are prevailing for the evaluation of the formability. Unfortunately, the mechanical property of tailored sheet metal has to be quantitatively defined in the simulation. In this study, the analytical equations are formulated in order to find the mechanical properties of the welded metal in the tailored sheet metal welded by co$_2$laser. Based on force distribution assumption, the constitutive behavior of the welded metal is investigated using uniaxial tensile test results of base metals and tailored sheet metal. Then, the strength coefficient, work-hardening exponent, and plastic strain ratio of laser-welded metal are calculate from those of base metals and tailored sheet metal. In addition, the existence of weld defects in the welded metal is indirectly detected by examining the slop of strength coefficient of the welded metal.

  • PDF

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

실험적 치아 이동시 견인측 치주조직에 미치는 영향에 관한 전자현미경적 연구 (ELECTRON MICROSCOPIC STUDY ON THE RESPONSES OF THE PERIODONTAL TISSUE ON THE TENSION SIDE FOLLOWING EXPERIMENTAL TOOTH MOVEMENT)

  • 장지우
    • 대한치과교정학회지
    • /
    • 제14권1호
    • /
    • pp.65-81
    • /
    • 1984
  • In order to observe the responses of the periodontal tissue on the tension side following the experimental tooth movement, 35 Guinea pigs were divided into the control group (5 animals) and 6 experimental groups (3 movement groups and 3 retention groups) consisting of each 5 animals. The experimental tooth movement of Guinea pig's upper incisors installing open helical loop were carried out by rendering continuous force : 5g (1st groups) 35g (2nd groups), 100g (3rd groups), respectively for 7 days. 3 movement groups (15 animals) were sacrificed soon after the continuous force, and 3 retention groups (15 animals) were sacrificed after the retention period of another 7 days. The following results were obtained from the observation of the surrounding tissues of teeth on the tension side through light microscopy any transmission electron microscopy. 1. The vessel walls in the experimental groups were thinner than those of the control group, the number of blood vessel had the tendency to increase. The greater the strong force applied to each group, the more the destruction of cells and fibers was found and the more the number of the red blood cell of vessel outside appeared. 2. New collagen fibers were produced from fibroblasts in the 1st groups (light force), but were produced rather less in the 2nd groups (medium force) and the 3rd groups (heavy force). 3. In the forming patterns of the new alveolar bone of the 3rd groups (heavy force), the bone trabeculae were formed towards the direction of the force to be applied, but the new alveolar bone in the 1st groups (light force) was produced evenly throughout the all surfaces of the alveolar bone rather than the patterns of bone trabeculae ; therefore, the patterns of new alveolar bone were observed differently according to the magnitude of the force applied. 4. In the retention group, it was observed that the collagen fibers were produced from the osteoblasts in the marginal areas of the periodontal ligaments being widely opened and were deposited on the alveolar bone surface but the production of collagen fibers from the osteoblasts in the other area of the periodontal ligaments was almost ceased, and a rest line on the new alveolar bone surface was found.

  • PDF

실험계획법을 이용한 튜브 하이드로 포밍용 이중관 벤딩 공정의 해석적 요인 효과 분석 (Analytic Factor Effects Analysis of Bending Process of Double Pipe for Tube-Hydroforming using Experimental Design)

  • 심도식;정창균;성대용;양동열;박성호;김근환;최한호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.310-313
    • /
    • 2007
  • This paper covers finite element simulations to evaluate the bending limit of double pipe for tube-hydroforming. The tube-hydroforming process starts with a straight precut tube. The tube is often prebent in a rotary draw bending machine to fit the hydroforming tool. During the bending the tube undergoes significant deformation. So forming defects such as wrinkling, thinning and flattening are generated in the tube. Consequently we analyzed the effect of process parameters in rotary draw bending process and searched the optimized combination of process parameters to minimize the forming defects using orthogonal arrays. The characteristic to evaluate the effects of the process parameters is the bending angle which wrinkling is generated, we define the bending angle at that time as bending limit. Of many process parameters, the process parameters of the bending process such as gab between inner and outer tube, boosting force, dimensions of mandrel were analyzed. And we observed the deformation modes of bent double pipe at specific bending angle in each parameter combination.

  • PDF

초소형 스퍼기어 제조를 위한 초소성 Al-78Zn 분말 압출 (Powder extrusion with superplastic Al-78Zn powders for micro spur gears)

  • 이경훈;김진우;황대원;김종현;장석상;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.387-390
    • /
    • 2009
  • This study was designed to fabricate the micro-electro-mechanical systems (MEMS) parts such as micro spur gears using hot extrusion of gas atomized Al-78Zn powders. For this purpose, it is important to develop new methods to fabricate micro-dies and choose suitable extrusion conditions for a micro-forming. Micro-dies with Ni were fabricated by LIGA technology. LIGA technology was capable to produce micro-extrusion dies with close tolerances, thick bearing length and adequate surface quality. Superplastic Al-78Zn powders have the great advantage in achieving deformation under low stresses and exhibiting good micro formability with average strain rates ranging from $10^{-3}$ to $10^{-2}\;s^{-1}$ and constant temperatures ranging from 503 to 563K. Al-78Zn powders were compacted into a cylindrical shape (${\Phi}3{\times}h10$) under compressive force of 10kN and, subsequently, the compacted powders were extruded at 563k in a hot furnace. Micro-extrusion has succeeded in forming micro-gear shafts.

  • PDF

초대형 열교환기용 열판 성형을 위한 22,000Ton급 유압 프레스 개발 (Development of 22,000Ton Hydraulic Press for the Forming of Heat Plate with Ultra-Large Size)

  • 임성주;박훈재;윤덕재;김응주;임혁;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.166-169
    • /
    • 2001
  • 22,000 Ton hydraulic press was developed using wire winding method. The hydraulic press consists of three piece of frame type. The outer layers of yoke-column frame and main cylinder linear were wound with piano wire(1mm${\times}$4mm) under controlled tension and the total length of wound wire was about 450Km. The developed hydraulic press is used for the forming of heat plate with ultra-large size. To obtain large force with relative small apparatus, high pressure of $1,500 Kgf/cm^2$ was supplied to main cylinder through pressure amplification by booster pump. Therefore sealing technique of main cylinder is so crucial that the seals were made of mitre ring type with super-elastic metal. The press total weight is about 150 tons, which is quite light and compact relative to that of conventional hydraulic press.

  • PDF

Analysis of Drawbead Process by Static-Explicit Finite Element Method

  • Jung, Dong-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1687-1692
    • /
    • 2002
  • The problem analyzed here is a sheet metal forming process which requires a drawbead. The drawbead provides the sheet metal enough tension to be deformed plastically along the punch face and consequently, ensures a proper shape of final products by fixing the sheet to the die. Therefore, the optimum design of drawbead is indispensable in obtaining the desired formability. A static-explicit finite element analysis is carried out to provide a perspective tool for designing the drawbead. The finite element formulation is constructed from static equilibrium equation and takes into account the boundary condition that involves a proper contact condition. The deformation behavior of sheet material is formulated by the elastic-plastic constitutive equation. The finite element formulation has been solved based on an existing method that is called the static-explicit method. The main features of the static-explicit method are first that there is no convergence problem. Second, the problem of contact and friction is easily solved by application of very small time interval. During the analysis of drawbead processes, the strain distribution and the drawing force on drawbead can be analyzed. And the effects of bead shape and number of beads on sheet forming processes were investigated. The results of the static explicit analysis of drawbead processes show no convergence problem and comparatively accurate results even though severe high geometric and contact-friction nonlinearity. Moreover, the computational results of a static-explicit finite element analysis can supply very valuable information for designing the drawbead process in which the defects of final sheet product can be removed.

스트럿 부재와 융합단면을 이용한 기둥-보 강결 구조물 해석 (Analysis of Beam-column Joints in a Structure using Strut Members and Composite Section)

  • 조재형;송재호
    • 한국산업융합학회 논문집
    • /
    • 제23권2_2호
    • /
    • pp.289-299
    • /
    • 2020
  • The composition of convergence cross-section of the material is a technique that provides reasonable design and construction of structures. It is frequently used in medium-sized bridges and architectural structures. However, the structural behavioral spare capacity enhancement of the structure by the application of the convergence cross-section is still limited by the expandability due to the limiting state of each material. In order to overcome these limitations, this study reasonably analyzed the construction stages before and after the convergence cross-section constructed and developed a technique for forming multi-point boundary conditions using struts, which are compression members. Based on the existing cases, a reasonable construction step for forming the material composite section of the entire structural system of the structure was derived, and a numerical analysis model for a specific part was constructed to analyze the behavior of the strut application. As a result of this study, the effect of reducing the sectional force of 7.40% in beam-column joint and 6.31% in the center of girder was derived, and the deflection, which is a measure of the serviceability of the structure, improved by 54.41% from the installation and dismantling of strut members at each construction stage.