• 제목/요약/키워드: forming force

검색결과 480건 처리시간 0.024초

유한요소해석을 통한 전자기 성형장비 공정변수의 성형력에 미치는 영향 (Effect of Process Parameters in Electromagnetic Forming Apparatus on Forming Load by FEM)

  • 노학곤;박형규;송우진;강범수;김정
    • 한국정밀공학회지
    • /
    • 제30권7호
    • /
    • pp.733-740
    • /
    • 2013
  • The high-velocity electromagnetic forming (EMF) process is based on the Lorentz force and the energy of the magnetic field. The advantages of EMF include improved formability, wrinkle reduction, and non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for the EMF process. A 2-D axis-symmetric electromagnetic model was used, based on a spiral-type forming coil. In the numerical simulation, an RLC circuit was coupled to the spiral coil to measure various design parameters, such as the system input current and the electromagnetic force. The simulation results show that even though the input peak current levels were at the same level in each case, the forming condition varied due to differences in the frequency of the input current. Thus, the electromagnetic forming force was affected by the input current frequency, which in turn, determined the magnitude of the current density and the magnetic flux density.

Bar 성형 코일을 이용한 전자기 성형에 관한 기초 연구 (A Fundamental Study on Magnetic Pulse Forming with Bar Forming Coil)

  • 심지연;강봉용;박동환;김일수
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.292-297
    • /
    • 2011
  • MPF(Magnetic pulse forming) process refers to the high velocity and high strain rate deformation of a low-ductility materials driven by electromagnetic forces that are generated by the rapid discharge current through forming coil. The goal of this study was to find the characteristics of dynamic behavior of workpiece and to find the main design process on MPF using bar forming coil. For these purposes, thin Al5053 sheet were used for the experiment. The measured strain data were analyzed by developed electromagnetic FE-model. The main design parameter is location of coil, electromagnetic force. In case of the bar forming coil, there exists the dead regions where the low electromagnetic force applied on the workpiece.

연소기 제작을 위한 전후방 유동성형에서의 성형력 비교 (Comparison of Forming Force on Forward and Backward Flow Forming for Combustion Chamber)

  • 남경오;염성호;홍성인
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.379-382
    • /
    • 2006
  • 두께가 얇고 길이가 긴 튜브 제품을 생산하기 위한 방법으로 유동성형 공정이 많이 이용되고 있으며 이는 다른 가공방법에 비해 성형력이 작고 유동성형에 의해 가공된 제품의 기계적인 강도가 우수하며 가공 후 표면 품질이 좋기 때문이다. 특히 유동성형은 로켓 모터 케이스, 연소기, 유압 실린더 그리고 고압용기 등과 같은 고정밀도의 두께가 얇은 실린더 제품을 생산하기 위한 적합한 공정이다. 본 논문에서는 3개의 롤러를 가지는 전후방 유동성형에 대한 유한요소해석을 통해 가공깊이와 가공속도가 성형력에 미치는 영향을 살펴보았다. 다양한 가공깊이와 가공속도 조건에서 얻어진 전후방 유동성형에서의 축방향과 반경방향의 성형력을 비교하였다.

  • PDF

전조가공을 이용한 기어의 치형오차수정에 관한 연구 (A Study on Correction of the Gear Tooth Profile Error by Finish Roll Forming)

  • 류성기
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.159-166
    • /
    • 2005
  • This study deals with the correction of gear tooth profile error by finish roll forming. First, we experimentally confirmed that the tooth profile error is a synthesis of the concave error and the pressure angle error. Since various types of tooth profile errors appear in the experiments, we introduced evaluation parameters for rolling gears to objectively evaluate profile quality. Using these evaluation parameters, we clarified the relationship among the tooth profile error, the addendum modification factor (A. M. factor), and the tool loading force. We verified the character of concave error, pressure angle error, tool loading force and number of cycles of finish roll forming by using a forced displacement method. This study makes clear that tool loading force and number of cycles of finish roll forming are very important factors that affect involute tooth profile error. The results of the experiment and analysis show that the proposed method reduces concave and pressure angle errors.

박판성형 마찰거동에 미치는 블랭크 홀딩력의 영향 (Effects of Blank Holding Force on Friction Behavior in Sheet Metal Forming)

  • 심진우;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.394-396
    • /
    • 2007
  • In this study, in order to see effect of the blank holding force on the friction behavior in the sheet metal forming, a sheet metal friction tester is designed and manufactured, which can measure friction forces in various forming conditions, such are lubrication, die roughness, drawing speed, radius of die corner, blank holding force, etc., and performed the friction test in which friction coefficients in various blank holding forces and pulling speeds are calculated using Coulomb's friction law. The friction test reveals that friction coefficient decreases maximum 30% as the blank holding force and the drawing speed are increased to 2.5kN and 1500mm/min, respectively.

  • PDF

박판성형 마찰거동에 미치는 블랭크 홀딩력의 영향 (Effects of Blank Holding Force on the Friction Behavior in Sheet Metal Forming)

  • 심진우;금영탁
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.381-385
    • /
    • 2007
  • In order to examine the effect of the blank holding force on the friction behavior in the sheet metal forming, a sheet metal friction tester is designed and manufactured, which can measure friction forces in various forming conditions such as lubrication, die roughness, drawing speed, radius of die corner, blank holding force, etc., and the friction tests are performed, in which friction coefficients in various blank holding forces and pulling speeds are calculated using Coulomb's friction law. The friction test reveals that friction coefficient decreases as the blank holding force, the drawing speed and lubricant viscosity increase together or individually.

유동성형의 성형력에 미치는 가공깊이와 이송속도의 영향 (The Effects of Forming Depth and Feed Rate on Forming Force of Flow Forming)

  • 남경오;염성호;강신준;홍성인
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.251-254
    • /
    • 2005
  • The flow forming has been used to produce long thin walled tube parts, with reduced forming load and enhanced mechanical and surface quality for a good finished part compared with other method formed parts. So flow forming technique is used widely in industrial production. Especially spinning and flow farming techniques an used frequently in automotive, aerial, defense industry. In this paper, FEM analysis of three-roller backward flow forming of a workpiece is carried out to study effects of forming depth and feed rate on forming force. The axial and radial forces on several forming depth and feed rate conditions are obtained. The phenomena such as bell mouth, build up and bulging during simulation are observed as well.

  • PDF

AZ31B 마그네슘 판재의 원형 및 사각형 동시변형 공정에서 블랭크 홀딩력이 두께변화에 미치는 영향 (The Effect of Blank Holding Force on Thickness Variation in Simultaneous Sheet forming process with Circle and Rectangle Shape of AZ31B Magnesium Sheet)

  • 권기태;강석봉;김현호;강충길
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.531-537
    • /
    • 2009
  • The effect of blank holding force on thickness variation in simultaneous sheet forming with rectangular shape and circular has been demonstrated. Because has investigated an effect on formability of magnesium sheet, in this paper, the effect of punch radius on formability have been thinning, various crack phenomena and forming velocity. By simultaneously forming process with circular and rectangular shape, the data of simultaneously forming process with circular and rectangular shape will used to a part development such as notebook computer case, cell phone and bipolar plate of fuel cell.

다양한 롤러 단면형상을 적용한 유동성형의 성형력 비교 (Comparison on the Forming Force of Flow Forming with Various Roller Profiles)

  • 남경오;김범년;원종호
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.113-118
    • /
    • 2007
  • The flow forming has been used to produce long thin walled tube parts, with the reduced fanning force and the enhanced mechanical and surface quality for a good finished part, compared with the fanned parts using other method. Therefore, flow fanning technique is used widely in industrial production. Spinning and flow fanning techniques are used frequently in automotive, aerial and defense industries. The main factors for the flow fanning machine design are motor power, bed rigidity, mandrel stiffness, spindle power, roller profile, etc. Especially, mandrel, spindle power and roller are important factors for flow fanning machine capacity. In this paper, three dimensional finite element method for analysis of one-roller backward flow fanning of a workpiece has been carried out to study effects of roller profile on fanning force. Applied roller profile have roller lead geometries of angle $20^{\circ},\;30^{\circ},\;40^{\circ}$, concave and convex. Axial and radial fanning forces on various roller profiles are obtained and compared with each analysis cases.

박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발(1부: 실험) (Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Processes (Part1:Experiment))

  • 이재우;금영탁
    • 소성∙가공
    • /
    • 제7권1호
    • /
    • pp.3-11
    • /
    • 1998
  • During the forming process of sheet metals, the drawbead in the die face controls a restraining force so that the sheet flows into the die cavity with tension. In order to investigate a drawgbead restraining force and a pre-strain just after drawbeads which are essential in the finite element analysis of form-ing processes, the friction test and drawing test are employed. The experiments performed with a cir-cular bead stepped bead double circular bead and circular-and-stepped bead in the various forming conditions and bead sizes show that the restraining force varies linearly with the blank holding force. bead radius blank thickness and friction but the pre-strain nonlinearly does with them.

  • PDF