• Title/Summary/Keyword: formation-ISM

Search Result 101, Processing Time 0.026 seconds

Electrophoretic Deposition of YBCO powder in mixed suspension solution of iso-prophanol and iso-buthanol (이소프로판올과 이소부탄을 용매에서의 YBCO 분말 영동전착)

  • ;;;Korobova N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.288-291
    • /
    • 2001
  • It is very important to select suspension solution for forming electrophoretic deposited YBCO thick film, because it is heavily affected to its superconducting properties. In this paper, high-temperature superconductor films of YBa$_2$Cu$_3$$O_{7-x}$ were fabricated by electrophoretic deposition (EPD) from alcohol-based suspension such as iso-propanol, iso-butanol, and their mixture. For the formation of YBCO dense and adherent coating on a silver wire by EPD, 1% PEG(1000) 2 $m\ell$, as a additive for making their surface crack-free, was used for electrophoresis. As a results, the cracks were considerably decreased and the superconducting critical current density (J$_{c}$) without/with PEG was 1200 A/$\textrm{cm}^2$ and 2020 A/$\textrm{cm}^2$, which films deposited in mix ism-propanol and iso-butanol suspension.ion.

  • PDF

Effects of Protective Colloids on the Formation of Polyurea Microcapsules

  • Lee, Eung-Min;Kim, Hea-In;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.19 no.5
    • /
    • pp.30-36
    • /
    • 2007
  • Cypermethrin-containing polyurea microcapsules were prepared by interfacial polymerization using aromatic 2,4-toluene diisocyanate(TDI) and Ethylene diamine(EDA) as wall forming materials. The effects of the protective colloids of polyvinylalcohol(PVA) and gelatin were investigated through experimentation. The mean size of the polyurea microcapsules was smaller and the surface morphology of the PVA was much smoother than gelatin. In addition the release behavior was much more controlled and better sustained. As the concentration of protective colloid increased, the wall membrane of the polyurea microcapsules became more stable, the thermal stability of the wall membrane increased, the mean particle size became smaller, and the particle distribution was more uniform. The release behavior of the core material changed according to the concentration. As the gelatin concentration was increased, a more controlled and sustained release behavior was observed. However, in the case of PVA, the increase of PVA concentration lead to a more rapid release rate.

LY$\alpha$ TRANSFER IN A THICK, DUSTY, AND STATIC MEDIUM

  • AHN SANG-HYEON;LEE HEE-WON;LEE HYUNG MOK
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.29-36
    • /
    • 2000
  • We developed a Monte Carlo code that describes the resonant Ly$\alpha$ line transfer in an optically thick, dusty, and static medium. The code was tested against the analytic solution derived by Neufeld (1990). We explain the line transfer mechanism by tracing histories of photons in the medium. We find that photons experiences a series of wing scatterings at the moment of thier escape from the medium, during which polarization may develop. We examined the amount of dust extinction for a wide range of dust abundances, which are compared with the analytic solution. Brief discussions on the astrophysical application of our work are presented.

  • PDF

CO Observations Toward IRAS 07280-1829 and Its Related Clouds (적외선원 IRAS 07280-1829와 이와 관련된 분자운의 CO분자선 관측연구)

  • Lee, Chang-Won
    • Journal of the Korean earth science society
    • /
    • v.32 no.4
    • /
    • pp.402-410
    • /
    • 2011
  • We present results of CO observations toward an infrared (IR) source, IRAS 07280-1829, and its possibly related molecular clouds. The physical parameters of this IR source such as its infrared slope (${\alpha}$=16) of the Spectral Energy Distribution and bolometric temperature (145 K) indicate that it is an embedded protostar. Its luminosity is ${\sim}2.9{\times}10^4L_{\odot}$, typical of a massive star. The CO profile toward IRAS 07280-1829 has broad wing components, implying a possible existence of CO outflow. The excitation temperature and mass of a molecular cloud (Cloud A) which is thought to harbor the IR source are estimated to be 9~22 K and ~180 $M_{\odot}$, respectively, indicating the Cloud A is a typical infrared-dark cloud. Its LTE mass is found to be much smaller than its virial mass by more than a factor of 10 which is inconsistent with the fact that a protostar recently formed exists in the Cloud A. This may suggest that the environment of the cloud where the IR source is forming is dominant of turbulence and/or magnetic filed, making its virial mass estimated unusually high.

FOLLOW-UP OBSERVATIONS TOWARD PLANCK COLD CLUMPS WITH GROUND-BASED RADIO TELESCOPES

  • LIU, TIE;WU, YUEFANG;MARDONES, DIEGO;KIM, KEE-TAE;MENTEN, KARL M.;TATEMATSU, KEN;CUNNINGHAM, MARIA;JUVELA, MIKA;ZHANG, QIZHOU;GOLDSMITH, PAUL F;LIU, SHENG-YUAN;ZHANG, HUA-WEI;MENG, FANYI;LI, DI;LO, NADIA;GUAN, XIN;YUAN, JINGHUA;BELLOCHE, ARNAUD;HENKEL, CHRISTIAN;WYROWSKI, FRIEDRICH;GARAY, GUIDO;RISTORCELLI, ISABELLE;LEE, JEONG-EUN;WANG, KE;BRONFMAN, LEONARDO;TOTH, L. VIKTOR;SCHNEE, SCOTT;QIN, SHENGLI;AKHTER, SHAILA
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.79-82
    • /
    • 2015
  • The physical and chemical properties of prestellar cores, especially massive ones, are still far from being well understood due to the lack of a large sample. The low dust temperature (< 14 K) of Planck cold clumps makes them promising candidates for prestellar objects or for sources at the very initial stages of protostellar collapse. We have been conducting a series of observations toward Planck cold clumps (PCCs) with ground-based radio telescopes. In general, when compared with other star forming samples (e.g. infrared dark clouds), PCCs are more quiescent, suggesting that most of them may be in the earliest phase of star formation. However, some PCCs are associated with protostars and molecular outflows, indicating that not all PCCs are in a prestellar phase. We have identified hundreds of starless dense clumps from a mapping survey with the Purple Mountain Observatory (PMO) 13.7-m telescope. Follow-up observations suggest that these dense clumps are ideal targets to search for prestellar objects.

DEUTERATED METHANOL (CH3OD) IN THE HOT CORE OF THE MASSIVE STAR-FORMING REGION DR21 (OH) (무거운 별 탄생 지역인 DR21(OH) 천체에 대한 중수소화된 메탄올(CH3OD) 관측연구)

  • Minh, Young Chol
    • Publications of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.29-34
    • /
    • 2014
  • We have observed the deuterated methanol, $CH_3OD$, toward the hot core MM1 in the massive star-forming region DR21 (OH) using the Submillimeter Array with a high angular resolution of about 1 arcsecond. The position of the hot core associated with the sub-core MM1a was confirmed to coincide with the continuum peak where an embedded young stellar object is located. The column density of $CH_3OD$ was found to be about $(2{\pm}1){\times}10^{16}cm^{-2}$ toward the MM1a center. The abundance ratio $CH_3OD/CH_3OH$ was measured to be ~ 0.45, which is about the median value for low mass star-forming cores but much larger than those of the massive star-forming cores. The ratio is believed to change depending on, for example, the chemical condition, the temperature and the density of the source. This ratio may further depend on the evolutionary phase especially in the massive-star-forming cores. The sub-core MM1a is thought to be in the very early phase of star formation. This large abundance ratio found in this source indicates that even the massive star-forming cores, during a relatively short period in the very early stage of star formation, may also show a chemical state resulted from the cold and dense pre-collapsing phase, the enhanced deuteration as found in low mass star-forming cores.

FUNS - Filaments, the Universal Nursery of Stars. I. Physical Properties of Filaments and Dense Cores in L1478

  • Chung, Eun Jung;Kim, Shinyoung;Soam, Archana;Lee, Chang Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2018
  • Formation of filaments and subsequent dense cores in ISM is one of the essential questions to address in star formation. To investigate this scenario in detail, we recently started a molecular line survey namely 'Filaments, the Universal Nursery of Stars (FUNS)' toward nearby filamentary clouds in Gould Belt using TRAO 14m single dish telescope equipped with a 16 multi-beam array. In the present work, we report the first look results of kinematics of a low mass star forming region L1478 of California molecular cloud. This region is found to be consisting of long filaments with a hub-filament structure. We performed On-The-Fly mapping observations covering ~1.1 square degree area of this region using C18O(1-0) as a low density tracer and 0.13 square degree area using N2H+(1-0) as a high density tracer, respectively. CS (2-1) and SO (32-21) were also used simultaneously to map ~290 square arcminute area of this region. We identified 10 filaments applying Dendrogram technique to C18O data-cube and 13 dense cores using FellWalker and N2H+ data set. Basic physical properties of filaments such as mass, length, width, velocity field, and velocity dispersion are derived. It is found that filaments in L~1478 are velocity coherent and supercritical. Especially the filaments which are highly supercritical are found to have dense cores detected in N2H+. Non-thermal velocity dispersions derived from C18O and N2H+ suggest that most of the dense cores are subsonic or transonic while the surrounding filaments are transonic or supersonic. We concluded that filaments in L~1478 are gravitationally unstable which might collapse to form dense cores and stars. We also suggest that formation mechanism can be different in individual filament depending on its morphology and environment.

  • PDF

THE PROCESSING OF CLUMPY MOLECULAR GAS AND STAR FORMATION IN THE GALACTIC CENTER

  • LIU, HAUYU BAOBAB;MINH, YOUNG CHOL;MILLS, ELISABETH
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.133-137
    • /
    • 2015
  • The Galactic center uniquely provides opportunities to resolve how star clusters form in neutral gas overdensities engulfed in a large-scale accretion flow. We have performed sensitive Green Bank 100m Telescope (GBT), Karl G. Jansky Very Large Array (JVLA), and Submillimeter Array (SMA) mapping observations of molecular gas and thermal dust emission surrounding the Galaxy's supermassive black hole (SMBH) Sgr $A^{\ast}$. We resolved several molecular gas streams orbiting the center on ${\gtrsim}10$ pc scales. Some of these gas streams appear connected to the well-known 2-4 pc scale molecular circumnuclear disk (CND). The CND may be the tidally trapped inner part of the large-scale accretion flow, which incorporates inflow via exterior gas filaments/arms, and ultimately feeds gas toward Sgr $A^{\ast}$. Our high resolution GBT+JVLA $NH_3$ images and SMA+JCMT 0.86 mm dust continuum image consistently reveal abundant dense molecular clumps in this region. These gas clumps are characterized by ${\gtrsim}100$ times higher virial masses than the derived molecular gas masses based on 0.86 mm dust continuum emission. In addition, Class I $CH_3OH$ masers and some $H_2O$ masers are observed to be well associated with the dense clumps. We propose that the resolved gas clumps may be pressurized gas reservoirs for feeding the formation of 1-10 solar-mass stars. These sources may be the most promising candidates for ALMA to probe the process of high-mass star-formation in the Galactic center.

A STUDY OF DWARF GALAXIES EMBEDDED IN A LARGE-SCALE Hɪ RING IN THE LEO I GROUP

  • KIM, MYO JIN;CHUNG, AEREE;LEE, JONG CHUL;LIM, SUNGSOON;KIM, MINJIN;KO, JONGWAN;LEE, JOON HYEOP;YANG, SOUNG-CHUL;LEE, HYE-RAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.517-519
    • /
    • 2015
  • A large-scale neutral hydrogen ($H\small{I}$) ring serendipitously found in the Leo I galaxy group is 200 kpc in diameter with $M_{H\small{I}}{\sim}1.67{\times}10^9M_{\odot}$, unique in size in the Local Universe. It is still under debate where this $H\small{I}$ ring originated - whether it has formed out of the gas remaining after the formation of a galaxy group (primordial origin) or been stripped during galaxy-galaxy interactions (tidal origin). We are investigating the optical and $H\small{I}$ gas properties of the dwarf galaxies located within the gas ring in order to probe its formation mechanism. In this work, we present the photometric properties of the dwarfs inside the ring using the CFHT MegaCam $u^{\ast}$, $g^{\prime}$, $r^{\prime}$ and $i^{\prime}$-band data. We discuss the origin of the gas ring based on the stellar age and metal abundance of dwarf galaxies contained within it.

THE 3.3 MICRON PAH EMISSION OF THE MID-INFRARED EXCESS GALAXIES DISCOVERED BY THE AKARI MID-INFRARED ALL-SKY SURVEY

  • Yamada, R.;Oyabu, S.;Kaneda, H.;Yamagishi, M.;Ishihara, D.;Kim, J.H.;Im, M.;Toba, Y.;Matsuhara, H.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.299-300
    • /
    • 2012
  • We investigate the relation between star formation activity and PAH $3.3{\mu}m$ emission. Our targets are mid-infrared-excess galaxies selected from the AKARI all-sky survey point source catalog. We performed AKARI near-infrared spectroscopy for them. As a result, we obtained $2.5-5{\mu}m$spectra of 79 galaxies, and selected 35 star-forming galaxies out of them. Comparing the PAH $3.3{\mu}m$ luminosities with the infrared luminosities, we find a linear correlation between them. However, by adding the results from literatures for luminous infrared galaxies and ultra-luminous infrared galaxies that are more luminous than our sample, the ratio of the PAH to the infrared luminosity is found to decrease towards the luminous end.